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INTRODUCTION

The last few years have seen a remarkable activity in gravity
observations in different parts of the globe, and with the advent of
new instruments of improved patterns there is every reason to look
forward to a rapid accumulation of further observational material.
Side by side, there has been a considerable output of research on the
theoretical aspects. The literature on the subject is however
scattered about in different books and periodicals which are often
inaccessible. Apart from this, it is so voluminous that it is possible
only for a comparatively few people to study each paper critically.
Some of the problems are still a subject of considerable difference
of opinion among experts, and it appears to be pertinent to take
stock of what has been done so far.

The purpose of this publication is to provide an introduction to
the fundamental problems of higher gravity, explaining the lines of
investigations developed in recent times, and the practical applica-
tions of the various formule. It is hoped that this paper will be
useful to a wide circle of readers, including the experts.

Chapter I deals with the various gravity formule with brief
proofs. The expansions of the various terms in the gravity formule
have been carried out in power series mostly with a view to their
application to the case of the earth. The classical part has been
dealt with extensively by Helmert in his Héheren Geodisie Vol. II,
but the notation employed there is unfamiliar to English-reading
people, and the treatment is often confusing. The modern develop-
ments are scattered about in a number of foreign periodicals some of
which are not readily available.

The practical derivation of the empirical gravity formule is
reviewed in Chap. IT. In particular, the intricate problem of the
derivation of the ellipticity of the equator is discussed.

Chapter III gives an account of Clairaut’s, Darwin’s and de
Sitter’s theory of the figure of the earth. Clairaut gives a differen-
tial equation between the ellipticities of the internal level surfaces
of the earth and the distribution of density, assuming that there is
hydrostatic equilibrium inside. Actually the material of the earth
18 nearly in hydrostatic equilibrium below the depth of compensa-
tion which is of the order of 50 km. Clairaut’s equation is not very
tractable to solution and has exercised the ingenuity of the early
mathematicians, who had to malke certain ad hoc assumptions about
the variations of density in the carth’s interior. These laws of
density have now been definitely disproved and consequently these
solutions have been purposely skipped over in this book as being
of purely historical interest. A solution based on our modern con-
cept of density distribution inside the carth as evidenced by seismo-
logical research is however included. The most reliable method of
determining the ellipticity of the geoid is outlined.



Gravity anomalies founded on the various theories of compen-
sation can be put to several uses, one of them being the determina-
tion of the inequalities of density in the crust. This is dealt with
in Chapter IV. It is pointed out that the problem has not a unique
solution even if no account is taken of the stresses in the earth’s
crust. Some useful formulie have also been incorporated for obtain-
ing the numerical estimates of the mass anomalies from the gravity
profiles. The part played by gravity data in elucidating the tectonic
folding in the various regions of the globe is also discussed. Gravity
anomalies provide a direct measure of the excess or underload.
Regions of very large positive anomalies, being areas of overload,
should be expected to be continuously sinking, which is by no means
always the case. A notable exception is that of the Island of
Cyprus, which has risen in spite of being a regton of large positive
anomalies. Again, the upheaval of land in Fennoscandia does not
bear a close correlation with the gravity anomalies.

Another use of the gravity anomalies is the determination of
the form of the geoid, and the deflection of the plumb-line. The
necessary formule and their practical applications are discussed in

Chapter V.

Chapter VI deals with the question of the choice of a reference
figure. The reference spheroids in vogue in geodetic work are so
diverse that it is indispensable to have a clear conception of the
conditions they have to satisfy before we can make a proper use of
them. The problem of the linking up of gravity and deflection data
is also elucidated.

For convenience, the diagrams have all been put together at the
end of the book in a double page so that they can be opened clear of
the text. A list of symbols is also given for easy reference.

Lastly, I would like to acknowledge my indebtedness to M.
A.N. Ramanathan, ».a. for seeing the book through the press and
for verifying some of the formulee.
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LIST OF SYMBOLS

=geocentric latitude

=geographical latitude

=longitude reckoned positive east of Greenwich

= longitude of one end of the major axis of a triaxial
ellipsoid

= Laplace’s functions of order »

=Legendre function of degree n
=gin # (unless otherwise stated )

. =radius of a sphere having the same volume as a nearly

spherical surface

c =principal semi-axes of a triaxial ellipsoid
I =total attracting mass of a body

=(a-c¢)/a

=(a—b)/a

=volume density

=surface density

=gravitational constant

=gravity at a point

=gravity at the extremities of the principal axes of a
triaxial ellipsoid

=mean value of gravity taken over a whole surface

=mean equatorial gravity on a triaxial ellipsoid

=equatorial value of gravity on a spheroid

=gravity at the extremity of the minor axis of a
spheroid

=normal value of gravity

=angular velocity of a rotating body

=wa/d,

=wk/G

=w?k[fM

=principal moments of inertia of a body

=height of the compensated geoid above the reference
spheroid

=height of the natural geoid above the compensated
geoid

=g —1,=conventional gravity anomaly



viii

Ag, =Free-air anomaly
Agg =Bouguer anomaly
Age = Isostatic anomaly

Agop =Hayford anomaly with respect to the Helmert’s
formula

Agor = Hayford anomaly with respect to the International
formula

7 =depth of compensation

n =meridional deflection (It has been used in this sense
in chapters v and vr only and should not be con-
fused with the equatorial ellipticity #)

£ =prime vertical deflection

0(e?) =residual containing terms in € and higher orders.
By the statement ‘ correct to 0 (€*)’isimplied that
terms of order higher than €? have been neglected.

In the text, by true or natural geoid is meant the geoid arrived
at from deflections or gravity, when the actual topography is not
interfered with. By compensated geoid is meant the geoid deduced
on the basis of compensated topography. The difference between
the compensated and natural geoids is, therefore, the deformation
produced by the compensated topography.



CHAPTER I

THEORETICAL BASIS OF GRAVITY FORMULZA

1. Definitions.—In the theory of the gravity field of the
earth, the following surfaces are generally involved: true spheroid,
level spheroid, triaxial ellipsoid and nearly spherical level surface.
The term ¢level spheroid’ ( Niveausphiroid) was coined by Helmert,
and denotes a surface whose radius vector differs from that of a
true spheroid by 10 or 15 feet (see para 6). It will be shown later
(chapter 1ir) that a homogeneous triaxial ellipsoid is not a possible
form of equilibrium of a rotating fluid. If the earth were homo-
geneous, this surface would obviously be ruled out from any
discussion of its gravity field. But this being not so, a triaxial
ellipsoid plays an important role both in the theory of the figure of
the earth as well as in the determination of its external field.

A nearly spherical surface is defined by an equation of the
form
¢=a1+§YMaLg, .. {1°1)
n=0
where Y, (6, L) is a Laplace’s function of order n, and 6, I are
the geocentric latitude and longitude respectively.
Y, (0,L)y=A4,P.(p) + (4,cos L+ B, sinL) P, (u)
+ (A, cos 2L + B,y sin2L) Py (p)

+oeeeen + (A.. cos nL + B,, sin nli) P,, (p),
where p = sin € and P, (p) = cos” @ Edi' P, (p). P, {pn)is
IlL

called a Legendre’s function of degree n.

The interpretation of the various harmonic terms in equation
(1-1) will be considered in chap. vi, para 2. The coefficient 4, in
the Laplace’s function Y, (6, L) defines the mean meridional ellip-
ticity of the surface, and is of the first order of small quantities.
All the other A’s are assumed to be of order 4,” or smaller,

The radius vector of the surface (1-1) differs from that of a
sphere of radius @ by a3 Y,. Its volume correct to terms of the
second order is equal to that of a sphere of radius « (1+Y,), and
the co-ordinates of its centre of gravity, assuming it to be a homo-
geneous body, arez = a 4,,5 = a Ay,,# = a B),, where 4,, 4;;,, By,
are constant coefficients in the expansion for Y, (6, L).

. If then we choose the origin at the centre of gravity, we can
write the equation (1:1) in the form

r=k(1+37,), .. (1-2)

n=2
Where k = a (1+ Y,) is the radius of a sphere of equal volume,
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The case when there is only one Legendre harmonic present
is very illustrative, as it lends itself to an easy geometric inter-
pretation. » = a (1+e€ P,) is the equation of a surface differing
from a sphere by » undulations of varying amplitudes, the maximum
amplitude being ae.

2. Potential of a static homogeneous triaxial ellip-
soid with special application to the case of the earth.—
The expressions for the internal and external potentials of a homo-
geneous ellipsoid were given by Rodrigues* in 1815. The proofs
are given in Routh’s Statics, vol. 1r.

(a) Internal potential.—

2 2
Let the ellipsoid be “_+g =1 . (1:3)
ER)
Let a>b>c,and lete= ° denote the meridional ellipticity
a
of the section of the ellipsoid by the plane y=0, and n= a—b the

a
equatorial ellipticity. The potentialt at an internal point («,,z)
of the above ellipsoid of uniform density p is

Ui=mfabep ( Agy— Ay 2> — Aoy y? — A5y 2 ), e (144)
where f is the gravitational constant,
< ds
and A= j Wero
v \P

ol v

= e (1°5)
jo (b2+s \/\[r

jo (c2+s ) VU (s)
Y(s)y=(at+s) (b*+s)(+s).

For numerical work, the coefficients 4y, A4, As, As,can be
evaluated by expressing them in terms of normal elliptic integrals.

But for the case of the earth, ¢, » are small, and it is more illus-
trative to expand the integrand in powers of € and 7.

2+

Putting 2 =v, we have

oc dv
“A“’:L Vo(v—2e+&) (s=2n+7)

* Corresponda,nce sur 'Ecole Royale Polytechnique, vol. 1r1.
+ Routh, in Ana,lytlca,l Statics, vol. 11, § 211, has deduced this from a priori
considerations. In Clarke’'s Geodesy, p. 69, this expression is deduced by utilizing

the lemma, that the potentials of confocal ellipsoids at an external point are in
the ratio of their masses,



[~ 4 dv

“ Aw:jl v/ v (0—2e+8) (v—2n+7)
oc dv

a? Ay = L (v—2n+ﬂg)\/v(v—2e+€2)(0—2’7“"772)’
oc dv

@ A= L (v—2¢ +€) /v (v—2e+¢€?) (v—2n+n"’).

Expressing the integrand as a power series in ¢, 7 and integrat-
ing, we have

1 2 ooyl
ady=2]1 +‘3‘(€ + 1) + S (E+77) + Cen

15 5
@ diy=2 [+ +E(e 4+ 9) + 2 (e4P) + Len ]
3 5 35 7 } (1-6)
1 1 1 ) 3 ’
a3A20=2 [3 + 5(6‘*‘3’0) -+ £(4€”+277]2) + 56'17:'
ad Ayy=2 [1 1 (3e+7) + ?%(27e~+4n) —:;en:l.J

We will make use of these expressions in para 4, when we find
the variation of gravity on the ellipsoid.

The accuracy of the above expressions (1+6) can be checked by
the fact, that when they are substituted in (1-4), the resulting
expression for U; satisfies Poisson’s equation.

V2 U," = _2Wfabcp(A10+ A90+ A30)
4"’;;”“ p [1+(e+n)+(e2+n9+en)]

= — 47rfp|:1—(e+’r))+677] [1+7-(€+77)+(62+772+€7))]

= — 47 fp.

(b) External potentml*—The potentlal of an ellipsoid at an
external point (z,y, z) is

U, ==fpabe (Aloo_Allo ‘”2_4‘1’20 ?lz_Also ), ... (1-7)
: < ds
where 4',, = —
K ju NZZD)
o ds
4, = —
’ ju (a2 +5) /¥ (5)
oc . (1:8)
Ay = j ds
A (bg‘*‘s)\/‘f’(s)
Ay = j N ———
u (849) /T ()
Y (s)=(a+s) (b*+s) (+5).)

* Routh, Analytical Statics, vol. 11, § 225.



The parameter u is given by the positive root of the cubic
equation

2 (2 4u) (4+u)+y(+u) (a@+u)+22(a®+u) (b +u)
—(a*+u) (B*+u) (*+u) =0. . (1-:9)

Comparing equation (1:7) with (1-4), we see that the forms
of the internal and external potentials are exactly similar. There is
however the fundamental difference, that while in the former the
coeflicients A4 are constant quantities, in the latter they are functions
of a variable « depending on the position of the point. For u =0
corresponding to a point on the surface of the ellipsoid, the two
expressions become identical.

The external potential may also be written in the form
. ab q o 0
U=mf a'lf—'f' {Boo — By — Byy” — By’ } ,

where a’,b’, ¢’ are the semi-axes of the confocal ellipsoid through the
external point (z, v, 2), and B, B, By, B;, are the same functions of
a,b'yc as Ay, Ay Aoy As in equation (1-4) are of (a, b, c).

3. Internal and external level surfaces of a homo-
geneous ellipsoid.—

From equation (1:4), we see that the internal equipotentials

are
Alomg + Agoyg + A302\J = 'AOO' [ ( 1 ’ 10)
The equatorial ellipticity of these surfaces is
1 1

™

Ay Ay _ Ay /Ay
L VA
V4
The meridional ellipticity is
11
V2 PV e

— V4
V4

. 2 T
Now AIO;WLI'{'%(G-F’”)],
. 2 I
A= | T+ (e+3n) |,
- 27 ,
Ay = 33 _1+%\3€+"I):|.

Hence 7, = 279 and ¢, = 2e,

All the internal level surfaces have therefore the same ellip-
ticity, which is 40 % less than that of the attracting ellipsoid.
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Hence the internal level surfaces of an attracting ellipsoid are
similar and similarly situated ellipsoids, but they are not confocal.
Also these surfaces are more spherical than the bounding surface.

The properties of the external level surfaces are difficult to
elucidate. From (1-7), we see that their equation is

A @2+ Ay + Ay = Ay e (1-11)

The coefficients A’}y, A’q, ete., are functions of a parameter » defined
by the complicated equation (1-9).

4. Gravity on a homogeneous ellipsoid and
spheroid.—For obtaining the force of attraction on a homogeneous
triaxial ellipsoid, we will make use of the formula (1-4) for the
internal potential. The external potential (1:7) is unsuitable, as
the coefficients of the various terms in it are infinite integrals with
lower limit %, which can not easily be evaluated.

The components of gravity at a point (., y, ) are given by

g = — %{;i = + 27 fabep A\

8U;
Iy = — 8y = + 27 fabcp Ayy e (1:12)
g4 = — oU; = + 27 fabcp Ay

Z
The resultant gravity is
g = 27 fabep /A @+ Ayt + A0 20 e (1-13)

If ¢ denotes the geographical latitude, the co-ordinates of a
point on the ellipsoid can be written as

_ acos ¢cos L Y = a(1—e* )cos ¢ sin L , = a(l—e’)sing
Q 7 . Q b Q L]
where @ = /cos® pcos’ L + (1—e?) cos® psin®* L + (1 —e,?) gin® @,

s _ a*=b o _a’-¢
and e’ = s—» €y = e
o a

Hence g = 2—% {oﬁAw2 cos® P cos® L+ a’d,,’ (1 —¢,%)? x

cos’ sin® L+ a? Ag? (1 e2)? sin?qb} Yo (1-14)

Substituting values of 4,4, 4y, 4,, from (1-6), and retaining
terms up to order € only, we have

4-7'rpfbc[ 5 ) (
1 —
g te ( sm¢ + ¢ 35 350 sin’¢

+~ sint ¢ ) ( + cos2 ¢ —11(—) cos® ¢ cos 2L)], ...(1:15)
fM
a?

(1+D + A’ sin* ¢ — B’ sin® 2¢ + €’ cos® ¢ cos 2L),
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where M denotes the mass of the attracting matter, and

D = %€+;—§62+110n
B =%69
¢ = —1—1077-

The magnitude of the neglected terms is of the order Ge’
which only amounts to about % mgal if G is taken as 1000 gals.

The values of gravity at the extremities (A, B,C) of the three
axes are

M 3 12 3
= f__<1 + e + 3% €’ +—5-17>, corresponding to ¢ =0, L= 0,

Jo = "2
M 3 12 4
g = 'f;'l—?<l+—5—e+3—5€2+g"7>, 5 5 ¢=0,L=90°
M 4 18 3
ge = %<1+€€+£62+€n>, ”» » ¢=900-
Obviously g.>g.and ¢:>>g..
L TR
Also g. —gs = T3\ Fet g5 ~7571)>0.

Hence g, >¢; > 9., which is what is expected.

But this relation does not hold for a rotating ellipsoid, as we
shall see later.

Again, the components of gravity vector at any point (=, v, 2)
are

8T,
,g.t=— 8w=2KA10Q3
s U,
W= _3—y=2"A20y
U.

13

go=— 5, =2 Ay,

where A4,y Ay, 43, are given by (146 ), and « =mfp abe.

It is obvious that the resultant gravity vector on a homogeneous
triaxial ellipsoid does not coincide with the normal to the
surface, because ¢, ¢,, g: are not proportional to the direction
cosines of the normal at the point. Hence a homogeneous triaxial
ellipsoid cannot be a level surface of the masses within it. But
there is nothing to prevent a triaxial ellipsoid from being a surface
of equilibrium of a system of masses. It is well-known that the
level surfaces of a thin shell bounded by concentric and similar
ellipsoids are confocal ellipsoids. If our triaxial ellipsoid is a
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member of this family, then so far as the external field is concern-
ed, the masses inside it are equivalent to the thin shell hounded
by similar ellipsoids. This s, of course, provided that all the masses
are inside the ellipsoid. Hence the external level surfaces of the
masses, which make the boundary of an ellipsoid a level surface,
are ellipsoids confocal with the given one.

The case of the spheroid (a, ¢)is deduced from the above by
putting n=0. It will be readily seen that even on a homogeneous
spheroid, gravity vector is not along the normal.

The radius of a sphere of equal volume is

1 1
k=a [ 1—g(ctn) —ge | = 0998864
Gravity at a point on this sphere is
M
=;~r {= 1-002,276—-.
i e al
The above equations enable us to compare the values of gravity
on a triaxial ellipsoid and a sphere of equal volume.

Go

For a nearly spherical ellipsoid, the following method can be
used to give an approximate value of gravity.

Let % + Z; +i~;= 1 be an ellipsoid with a small ellipticity.
= -~ C

The radius k of a sphere of equal volume is given by %= abe.
Put a=k(14¢),b=k(14e),c=k (1+¢),
then (14+¢) (14¢€) (14¢) =1,
or neglecting higher powers then the first,
e+e+e=0.
The ellipsoid can now be written in the form

9

T 1
F(l+e) ?
or Ayt + =42 (a2’ et tept),
or P =142 (et ey +ez ).
Hence r=k+ 710— et

The potential at any point may be regarded as due to a sphere

of volume density p, and a coating of surface density %Ze,n:{‘ on,
this sphere. The potentials at internal and external points are
2 9 0 ) )
V.= g7rp (3k*—2" )+ é mp (€% + ey’ + €52%)
J

4 B 4 5 g o kY
V.= g 7TP"'1’; + 5P (e +ey° +ey2” )<—T> .



Gravity at an internal point of the sphere is
8V \?
9 = '\/2 ( o ))
/8 4\ 8 4\° 8 4\
= '”'P\/w“ (gﬁ - g) + ?/2< 56~ 3‘) +2° (3‘53 - §>

(1-16)
This may be written in the same form as (1:13 ), namely

g=2m fpabe v B+ Byy* + By 7,

where By, = 2 l+i(e+n)+leg:|
35 g€

. 1 1
@By, = 2 [?—I— (e+3n) + geg]’

@B,, = 2 [: "

3]

Comparison with equation (1-6) reveals, that the above coeffi-
cients are identical with the corresponding A’s up to first order
terms.

acos ¢ cos L b’cos¢smL _csind. .46
Q Jy (LQ aQ ln( )5

we obtain the value of gravity on the ellipsoid to be

._ﬂ”[1+ (Ee+ 7 +le‘3>+sin2¢<—§€— l"7_ieg)

Substituting =

107 3 10 5

—llon cos® ¢ cos 2L — 2—10%6 s1n22¢’_l

The ellipsoid is partly internal and partly external to the
sphere, and strictly speaking, this formula applies only to those
¢ portions of the ellipsoid which are within the sphere. It is also

approximate, since the three-dimensional mass Z 3¢ x? above the

sphere is replaced by a coating.
Comparing it with the rigorous formula (1-15), we see that
the error of this approximate formula is

B9 = JC_M_(]O. ;_26 sin’ ¢>.

The maximum error is at the pole, and amounts to 4 mgals. The
minimum error is about 0-1 mgal at the equator,

The corresponding formula for gravity derived from the ex-
pression V. for the external potential is

_Ji'”_f{H(*. 7 ) -e(l _1 _£2)
g, = =z 5€+1017 + sin“¢ 56 101; 56

1—1(—) 7 cos* P cos 2L+ ?73 €’ sin® 2¢ } '
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As mentioned before, this method involves a condensation of matter
of thickness of about 4 miles at the equator and 8 miles at the pole,
and is necessarily approximate.

The application of this method to the case of a nearly spherical
surface r=a (1+2 ¢, Y,) will be readily understood after a perusal

n=1

of chap. v. At this stage it need only be mentioned that if we
take as a reference surface the spheroid r=a (1+¢ Y, +¢ Y,),
having the same ellipticity as the original surface, then the differ-
ence in the values of gravity on the two surfaces can be obtained
very accurately by considering the effect of a coating of skin density
ap 2 €, Y, on a sphere of radius a.
n=3

5. Rotating bodies.—We have so far considered only static
homogeneous bodies. The application of these formule to the
case of the actual earth is obviously very limited, because we know
that the earth is rotating, and also that it is heterogeneous.

The expression for the external potential of a homogeneous
rotating spheroidal earth is W= U+ $w?s* cos? 6, where *

M a’e? . atet . .
U = 'f_ et —_— 2 Rt 40 - 9 !
- {1+101.2(1 3 sin €)+280r4(1055m 90sin?d + 9) + ... },
e being the eccentricity. From this we can derive the expression
for gravity on the rotating spheroid.

In the general case, however, the body is not homogeneous, and
its internal constitution is not known. We will now show that the
gravity field can still be determined provided the surface is an
equipotential. The extra condition that the surface is an equipoten-
tial is required to compensate for our lack of knowledge of the
internal mass distribution.

6. Gravity formule for rotating bodies.—For a static
homogeneous ellipsoid, we started with an expression for the internal
potential. This is not possible for a heterogeneous body whose
internal law of density is not known. The problem of finding gravity
on such a surface is soluble for certain types of rotating bodies, and
that only when the outer surface of the body is an equipotential.
There are two main directions into which the body of research
into gravity formul® may be branched. One is the classical method
of Stokes, Helmert and Darwin, and the other is the modern work
of Pizetti, Somigliana, Cassini and other continental writers.

Stokes’t solution is embodied in his famous paper “Ou the
variation of gravity at the surface of the earth” and is applicable
to a nearly spherical surface. The polar equation of such a surface is

’I'=k(].+°2:uu)) vee (1'17)

where [ denotes the radius of a sphere of equal volume.

* Routh’s Statics, vol. 11, § 303.
t Mathematical and Physical Papers, 2, 1883, 131-71,
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The potential at an external point due to matter within this
surface is ‘

wW=2 7];1:1‘ + % *? cos? 6.
The surface being an equipotential, we will have W=1W, at all
points on it. This condition gives

W=fY0(l R By )—“””(l —sined) ), ..(1-18)
r 7 218\ 3

where fY, = kW, — %wng; Y, is the mass of the matter inside

the surface.

If dn, dr denote elements of length along the normal to the
surface and radius vector of the sphere of equal volume respectively,
then gravity on the surface is

where G =f——Y° - % w?k
and = —

G denotes the mean value of gravity over the whole surface.
Knowing m’, g and G, we can get k andw’s. If then, we are given g
at all points of a level surface having no masses external to it, the
parameters defining the level surface are known with one reservation.
All the u’s can be determined in equation (1-17) except u,, which
determines the co-ordinates of the centre of gravity of the level
surface. The gravity values therefore enable us to determine the
ellipticity of the level surface, but not its orientation.

The converse problem 1s, “Given the form of the level surface,
gravity on it is known except for one constant G or m’, which must
be obtained by some other method”. We shall discuss this more
fully in chapters v and vi when we are considering the reference
surfaces for gravity work.

The formula (1:19) has a direct application to the case of
the spheroid and the triaxial ellipsoid. The equation of an oblate
spheroid correct to the first order in ellipticity € is

1'J=k[1-—e<sin’~’0—;—)>:|.

Gravity on it is therefore

9, =G [1+(gm'—e><sin?0—é>]. .. (1:20)

The polar equation of a triaxial ellipsoid, the mean ellipticity
of whosc meridians is ¢, and the ellipticity of whose equator is 7, may
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be written as
r=k [1 +e0< :]—;—sin2 0)+%ncos‘39 cos2<L—L0)], e (1-21)

where L, is the longitude of the extremity of the major axis. By
comparison with (1-17), we have

u, =0, u,=¢ ( %—sin‘"’0>+%'r)cos20cos 2 (L—Ln).

.
Hence g= G{ 1+ < € — %m') <% —gin 20) + %’r) cos %4 cos 2<L—LO) },
e (1-22)
i o'k W, o .
where m' = a and G = - k, W, denoting the value of
the potential on the equipotential surface.

Caution however is required in utilising the above formule
based on Stokes’ paper, as they are derived from first order considera-
tions only. Helmert* and Darwin* realized that they were inad-
equate to satisfy the practical requirements of geodesy, and
extended the gravity formule to second order terms in ellipticity,
their methods being practically identical. They proceeded from the
following expression for the potential at an external point P due
to attracting matter within a surface.

d 5 fY,
UP:M A _ 5 T e >R, L (1028)
I+ —2Rrcosd  p=o 1
where Y, =J-”- R* P, dm.
R=0
7, R denote vespectively the distances of the point P and an
element of attracting mass dm from the centre of mass, and ¢ is
the angle between the directions of R and r.

Choosing the origin at the centre of mass of the attracting
system, and the axes of inertia as the axes of co-ordinates, the first
three terms of (1-23) can easily be evaluated. We have
Y, =M, the total attracting mass,

Yl = O’
Y2=”§R'~’P2 dm =-§(A;—B— O) (singe—%) + i—)(B—A) cos®d cos2 T,
where 4, B, C are the principal moments of inertia of the body.

Hence, the complete expression for the potential W is

szMgl _ 3,I_E (sin 29 _l ) + 3 B_fl cos *d cos 2 L1 +f£‘ +'ﬂ:'~‘
r { 27 3 4 M yooa TD

+ el +%w91'900s20, e (1-24)

1 A+ B
where K= ﬁ(_ 5 + O’).

* Hoheren Geodiisie, 2, 1884, 50-130,
t Scientific Papers, 8, 1910, 78,
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The essence of this method is, that although the constitution
of the body is unknown, the leading terms of the potential can be
evaluated in terms of certain constants of the body. Equation
(1-24) represents the potential of any rotating body. In deriving
it, we have not made use of the condition that the boundary of the
body is an equipotential surface. The form of the surface and its
internal constitution not being known, one cannot proceed much
further with the evaluation of gravity on it. Helmert, however,
used equation (1:24) to give a clue to the potentials of the level
surfaces of the earth, which he designated by ‘level spheroids’.
The forms of these spheroids and the values of gravity on them
have to be connected, so that given one we can find the other.
This cannot be done for the actual earth, because for connecting
g and » one extra condition is needed, namely, that W is constant
on the surface. This condition does not hold for the earth.
Helmert * assumed the potential of the level spheroids to be

Uzﬂ[l-{— ‘217(: (1—3sin%d) i ( cos’d cos 2 L
7
2,
+%%ﬂf"]. . (1-25)

In this, the quantities Y;, Y, etc., have been neglected, and 4, B
are no longer the exact moments of inertia of a level spheroid.
Each level spheroid is characterised by the value of U on its
surface.

Since we are now aiming at accuracy up to second order of
small quantities, we have to take

gﬂ — U'l'l + U22,

_oU _oU
Where Ul -_ 8—7«’ U2 -_ o—.a’é.
Gravity at an external point so deduced is
3K - 9(B—4)
= J7 —_ 6 _ 29 i
q . o (1—-3sin*d) + 4 covdcos 2L
23
a}}; cos”ﬁ} .

Helmert does not develop this equation further. Attention
may however be directed to the fact that if we assume the form of
the equipotential to be

r==k {1+e(,(%—sin90) +%ncosgecos2 (L—L,) }

the formula for gravity { to the first order in ¢, and %) reduces to

5 1 ., 1
g=0G 31 +|e— m 53'—5111‘0 +-ymeostcos2 (L—1,) ¢

which is identical with equation (1:22). Tf U, denotes the value
of the potential on the level sphemld the relations between the

. Hoheren Geodlsie, 2, 1884 72
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various constants are

3
o fMy, 2,
= kﬂ(l—gm)
, 0k
m = G }
K 2 1 .
zv=3(v'§m>
B—A4 _ 2
M~ 37

It is worth pointing out that the expression (1:25) for the

potential must be supplemented by a term B 7_1:4 before it can be used

for deriving the gravity formula correct to 0 (€*) on the surface
r=kFk % 1+ ¢, (% — singﬁ) + %ncosgﬁcos 2(L-1L,) z
Helmert* next took as an approximation to W,

fM{l-l——(l 3sin’d ) + J:,j[cose

+2L<s1n*0——sm(9+—~)} . (1-26)
r

and proceeding as before found the equation of the level spheroid
U=W, to be

r —a{l (ts—"e~ ‘2 em+ S)Sinf"e— (262— ;)— em— S)Sin‘*ﬂ}
(1-27)

-

and gravity on it to be

.
1=6.{1+ (5m—e+e— 1 em,—lé’a)sinﬁe—(nﬂ—s& sin'd 1,
: {

- 4

. (1-28)
wheve (7. denotes the mean value of gravity on the equator.
. M 3 o 1 9 ., 47
(r’,,=f — Zm—e - Tt 4e T8
o> ll-i—e 2fm € 26m+4m +7 §
w’a
Mmn=
“,
=D  (1-29)
at
3K 1 1 3 .. 1
P T T g T gemd w8
a —’;‘lr::(]+ ]; €+ '13—7",—--:1; € +—3—em——l—m +]"'r8 J

In terms of geographical latitude ¢, equation (1:28) may be
written as

g=G. (1+ A" sin* ¢ — B’ sin? 2 ¢), e (1-30)

* Hbheren Geodisie, 3, 1884, 89,
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7 5 — 2 ]. 2
where Al =—¢+ 5™ ¢ — oem +—7—3§ (1-31)
4B = 36 — T + 4de 4.
The mean value of gravity on surface (1:27) is
U, 4 8 25
=D (1-gm -t Tt ). e (1032
G= fM( 3 45 + 9 (1-32)

Since this is independent of 8, we see that the mean value of gravity

on the family of surfaces (1:27) is the same for different values
of 8.

If we taked = L& —3% em, the surface (1:27) becomes a true
spheroid. If this spheroid is an equipotential of its internal masses,
gravity on it is

2 2 T
+(%e9——12—5me)sin‘0}, {1-33)
where @, faM(1+e 2m +eg—?—iem + zmQ L. (1434)
In terms of geographical latitude ¢, gravity on a true spheroid is
g=G. [ 1+ 4 sin® $—B' sin® 2¢ ], .. (1-35)
|4
where A'=%m—e— i—iem
;1
B=?e(5m—€) (1-36)
o’ a
m=——.
G.

Darwin starts with the level spheroid
= a(] —esin®d— %eg sin®6 cos?d + x sin’@ 00526), .. (1:87)

whlch becomes identical with (1:27) if x is taken equal to
2 € _ 2 me — 8

Equation (1-37) may be written as

o e _1_ 1 2 ?_le)
;—rc[(l-i-l X 36 5(-:)+P¢<21 36 75
8 12 , ]
—P (2 —22
35% T35° )

:’“[]'J’P*(‘-zzix_:gse”g )- (35"—0—5 ) )

2 1 1
‘here k= 1 C N — e =R
where a( +15X 3€ 56)
_ Mg, 1 8o 2, 2}
Wa{ +3m 456 +§em —m
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Darwin’s formula f01 gravity on this surface is

64.‘ _3 2 25 _' )
[”( 3 T T 9 T8 +21x
12 45,24 N\, :
—(*7—’”1,6—'56 +?X)I{]-.. (1'59)
G denotes the mean value of gravity on (1-38), andis given by the
expression
¢ );Gﬂ{,[(l——;—m-kgme+m——18562)
(1454 B T B 140
Gﬁ(1+6m 3 € i +105x e )
fM( a8 o b
1-—- 9 1—56+56m ),
G'

The equatorial value of gravity is

(,—ﬂVI(l—% +e—?—im€+zm2+62 % )
9 2

3 13 o B2
- H eI g Y )
It should be noted that while @, depends on x, G does not. In

other words, the mean values of gravity on a spheroid and a surface
whose radius vector differs from it by ay sin® @ cos* @ are the same.

The parameters 6 and ) define the radial separation of a level
spheroid from a true spheroid. It is to be observed, that they do
not affect either the mean value of gravity on the surface, or the
mean radius. The swrface (1-37) differs from a true spheroid
having the same axes by a x sin® 0 cos® §. We shall see in the next
chapter that x is of the order 200x 1078, The level spheroid
approximating to the geoid of the earth can therefore differ at the
most by ten or fifteen feet from a true spheroid.

An extension of the above result is, that if the geoid is

(1-41)

2 =
r=F (l—gePg-i—Zun), o (1-42)
2
gravity on it is
g=G[1+aP2+,3P4+2(n—-1)u,,], eee (1-43)
where a= —(5m —2e)+6—§m£—2i1 e
- _ 4 2
35(15€m + 2¢?) ; et
G ='ﬁ¥(1—%m'+%m'9—1§re +gem )
' o

G J
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This is a more precise form of equation (1:19) which was
based on first order considerations only.

It is interesting to show that this formula is correct to terms
of order € by considering its application to an ellipsoid. The equation
of a triaxial ellipsoid is

rma(1-teo byl [ian (-2 Bar 1)
r=dqa —36—37)—56 +2—36—63€+37)

12 1
ﬁe *P,+ - 5 7€08" Hcos2L:|

2 1 23 12 1
=k[1—§eP2+<§n 83 € )Pq+35eP4. 2'r)cost9cos2L_‘

where € denotes the ellipticity of the meridional section through the
2z plane, and 7 the equatorial ellipticity.

Comparing with (1-42), we have
,—(3 giob62)P2+lncos200052L
u,= == 35 °P4, us=u;=etc.=
Hence, by (1-43),

1 2,), 36,

1 -
+§ncos200052LJ
1 . s 1 23
=G—[1+‘2—<051n9—1)<a+ 3"7 63 )
)| 1 .
+§<355in40—305in29+3><,3+ %ez)+—2ncos“9cos2L]

11 179
=G[1‘§“‘ t3sctE ¥

A 1 185 35 9,
+sm0(2a+2n—42 B)+31n€(8[3+2e>
1
+ gmeos’fecos2 L :l
The constants a, 8 contain a variable m’ defined by m' = 2(;—]'— It

o’ a
Ju
by the relation m/’ =m( 1 —%m); g« denotes the value of gravity

can be easily shown that it is connected with the variable m =

at the point #=0, L=0. Putting in the values of a, B in terms



of m, we have
Loy By W 1, )
g=G[(1—€m+§e+36m+45e—6n 196 ™€

. LI VAR S
+ sin* 4 —e+2m+—2—n+21me 2™~ ¢
7 1
+sin‘*B(—%}me+§eg>+50005200052L].

To get this expression in terms of geographical latitude ¢, we put
0 =¢ —esin2¢. Then

5 1 25 , 26, 1 145
g=a [(1 —6m+§e+é€m~+ﬁe“—gn—ﬁé me)

2 5 1 19 25, 12)
+sm¢<——e +§m+27) +4—2me—12m - 3¢

1 5 1 0
+sin‘“’2qb(—8-e‘l— g me >+§ 7 cos” ¢ cos 2L ]

=& l:l + A’ sin’¢ — B’ sin®2¢ + € cos® ¢ cosZL],

where
o (1= mate s B 2.1 145)
and G='f%<l—%m+m2—%eg+%em)
e +3€+3"I 3m+5€—}-m,
Hence &' ='f;t—l‘2{[1 +e +l'r) - ?m+62+ %mz_%zme_]
5 1 17
Al 4 = — 2 =
S0 €+ 2m+ 21; 14me L
|4
B =%me—%e‘~’
A |
C =?n_

This agrees precisely with our later formula (1:73) obtained by
Pizetti’s method, which is correct up to terms of order €.

To complete this discussion, we will give the gravity formule
on the two surfaces

r=a (1—¢sin® @) vee (1-45)
2
and 'r=k< 1—3~6P._>>. . (1:46)

The radii vectores of these two surfaces differ by terms of
0 (ae®), i.e. by 200 feet or so. The terms in € in the expressions
for gravity on these two surfaces will naturally be different.
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On the surface (1-45), gravity is
g=G. (1+X sin® 8+ p sin®@ cos® )

=@ [(1+ lx+3p>+P2(3x+ 3#>—§# P,]

3 15 3 21 35
=G (14+aP,+BP,)
=G, (14 4’ sin’¢ — B’ sin® 2¢), (1-47)
where
7\=—5—m e—lzme Eeg )
2 14 7
L
_f—*! 1 E _ﬁ _9_ 2 l 2)
G. g smte— T met+ mit e
. o .
G=M‘,I<l —m+=et+m— —l—e")
a® 3 5
a =£m— 24 64 20225,
3 3 63 63 18 C (1-48)
B =—1—72me—~5€2
A =gm—e— iime :;eg
B =gme— %eg
m = wga_wgaﬁ(l 3 w’a? —e)
G M 2 M J
On surface (1-46),
g = G, (1+X\ sin’0 + p sin%f cos®d) v 11-49)
= G (1+aP;+BP,),
where
)»=£m—e—-1—77)105--162
2 14 21
/.l,=%¢-:'m—}-e2
M 3 1 9 , 13 11,
G=tM( 1= By Lev Fp2 131 )
k2( 2T T T (1-50)
=fM<_2,4,2_gg+@, .
i w \1 5™ +Fm 156 "™
= Em’——2<-: + —Géem'— —%—e2 |
3 3 63 21
_ 12 _, 8 , ,__ o’k
,3——7~me :‘B—E)c-:,smdm—(rY . J

We will now consider Pizetti’s * and Somigliana’s 1 treatment.

* Principi della teoria meccanicn della fijura d’equilibro dei planetti, Pisa, 1913,
t R. Accademia Delle Scienze, Torino, 1934,
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Their method leads to elegant formule for gravity on an equipoten-
tial sphere, spheroid and triaxial ellipsoid. These formule do not
involve power series. For numerical work, however, it is convenient
to develop expansions in terms of ¢, 7 and neglect terms of small
order.

The external potential of any rotating body may be written as

]V=(ﬂg+lwﬂﬂ)ﬂ,<le-le(m+y) (1-51)
my b1 my, 2

where V, and V; are two functions such that
Py =1and V; = (4°+4°) on the surface,
and
Lt.

R

RV, =m,, and Lt.

R—>oc

RV] =m,.

b
for the external potential is

W=ifMV, (u)—lm2 {B Vi(w) + ByVys(u } + lwﬂ(avg+yg), (1-52)
where » denotes the parameter of the confocal elhpsmd which passes
through the point ( »,y,#) at which the potential is required, and is

22 " i
: : =1.

aiven by th itive root of th ti . + - -
g y the positive root of the equation L s S Sy

B,, B, are two constants which are determined from the condition
that W is constant on the ellipsoid.

The functions V are given by the following expressions :

(< ds )
Vo (w)=) —=
k12 \/1P
et .2 e 52 d
Vi (w) ( ?Q’ n'l/l + ; - 1) N : — .
J,\a+s b +s *+s (@*+s)/Y¥(s); (1:58)
Via (1) = P ( f ?yb + ,,z; - l) ds
LA 0T T )5 J¥ ()
where Y (s)=(a*+s) (b®+s) (& +s). )
Let
41’11 = (" ds ’ —!,a: ds
Lo(@4s) ¥ (5) P (@) S (s
P ds , ds
1112— “2 o —— ,A20=I o —‘+(1’!‘)4)
v (@ +5) (B4 8) /Y (s) v (B+8) /¥ (s)
T
(B +5)° /¥ ()
Then
Vi(u)=3a24" + A, + £ A — A0 (1-53)

Via(w) =224’y + 3 YAyt 7 Ay —

Ay )
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Substitute these values of V,;, V,; in equation (1:52) and write
)2= ) _ 62+u 2 _ 02+u a2
# = (Ftu) Pt Ptuw
The condition that W is constant for »=0 gives
(3A11a2 - A13CQ) .B1+ ( A12a2 —_ Agscg) B2=0L2
(A12 b2 —_ A]3 Cg) .B1+ (3A22 bg - .A2302) Bg_:bz.
In these equations 4,;, 4;,, ete., are infinite integrals defined by
(1-54) with the lower limit of integration w=0.

(1-56)

If g, denotes the component of gravity along the x axis, we have

gom— W= Loy Lot 24 5,2 m Y o (17)
7
From equation (155 ), we have
,%:6&'1‘1’11— ! —{‘,3—3124" 2?/2
8 (@ +u) /¥ (u) Lartu Fru 5
+ 2 i
c+u S
, 227
=6[L‘A11 o Su)
(a*+u) \/\Ir S
2
%:2&:1{'12 y su.
g (B +u) /¥ (u) O
By (1:53),
87, i{ 1%
T N IOV TR
Also since i + y + s =1
50 d+u bB+u Ftu ’
-1
du 2 x ¥ 2
= +— YR
we have ox m2+71,{(a+u)+(b u)? (c'+u;‘}
Substituting these values in (1-57), we have
g = l:fiVI«—wK( u) 21 +w2P(u)]-
)V u) @t
M — o*K
Simi]arlyg,,=y[fff \u) : 31 +w2Q(u)]’L (1-58)
R (u) /¥ (u b*+u
— \
g. = [fM wK(u g +02R(u)]’
B (u) /¥ (u c+u
2 — @’ 7/' 2 )
where A () —((L'2+4/)2+(b2+u) E

l“"

+
— Bz'.’/ ]
() = 2[ (e® +u) (b*4u)? lr we (1:59)
P=3AB + AuBQ—l
Q= A,B +3 Ay B, — 1
It - A’lﬂ Bl + 11,23 Bg. J

-
~
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Putting »=0, the components of gravity on our ellipsoid at a point
(z, y,z) are

— [jﬂ/[— ‘K +w2E] £r
abe B ( o
_ _/WI— ~K E]l— em
[ ab(,h‘ e bt r (1-60)
. = [_fM—w~K<0> rop) 2,
abch? (0) c

where £ =a*P, =4*Q, = R, and P,, @, R, are the values of
P, @, R for u=0.,

The surface being equipotential, the resulting direction of
gravity is along the normal, whose direction cosines are

x Yy P
a2h (0)° b*h(0)’ ¢h (0) "
Yq, + Ag fM—ng(O)
b*h(0) (0)~  abeh(0)

If g., gs, g. denote the values of gravity at the extremities of
the three axes, we have from (1-61)

£ x

a*h(0) +w’B1(0). (1-61)

Hence ¢ = +

9(;1 abc(f]k[ 21?:“’2>+a’_2£
L= 1 (riy+ 2F
Henee .5 + 2¢1 +9;§ abch—ab K(0)+ @’ BR*(0) = ¢ x 1(0),

_ (ag,cos® L +bg, sin® L) cos® ¢ + cg. sin® ¢

vV (a® cos® L+ b sin’ L) cos® ¢ + ¢* sin® ¢
1+p sin? ¢ + g sin® L cos? o
+p sin® ¢ + ¢ sin® L cos® ¢ , e (1-63)

= g(! 3
Vv 1—esin*¢—e*sin® Leos® ¢
where p= e~ 0fa g= by —ag.
AGa af,
a2 — b‘l
W= e = = ( e (1-64)
) ag —c” a
ey = = 2e—¢,
- alz J
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Expanding the right hand side of (1:68) in an infinite series,

and retaining only terms up to order ¢’, Somigliana* has obtained
the expression

g = ge [1+%(e; +2p)sin*e +

-

w]r—u

(e®+2¢ ) cos® ¢ sin’ L

+%e;(32 4p)sm*¢] . (1:65)

The above summarizes Pizetti’s and Somigliana’s treatment for
a triaxial ellipsoid. As these formula stand, the various constants
are expressed in terms of infinite integrals, and it is neither easy
to know the orders of magnitude of the various terms, nor possible
to compare the formule with the older ones based on classical
treatment. It is of interest to find expressions for these constants
in terms of ¢, 7 which we know to be small for the case of the
earth. The results are as follows.

The values of 4y, 4, &ec. oceuring in equation (1-56) correct
to the second powers of € and 7 are

9 0 10 2 3
A, = - 1+ —e+ —77+_ €+ T —e )
. 5a’< 7 7T A 1" 9"
A, = 2_(1+ée+§ +19~+§77l+ée17)
S5a’ 7 7 21 21 3
=4
4 = 2,(1+ LI 2 4+ 852,10 2+ien) (1-66)
Sab 7 '7 °1 21 3
A22=_2__(1+_5_ +2_5 +£)2+ 29977‘3-{_2_551;)
S5ab \e 7 7 21 63 9
2 15 15 65 65
Agy = I+ et Zpt =+ — +5€'1)
: 5a5< R TR TR
Substituting these values in equation (156 ), we have
5 9 5 25 ; o 191
B=""a|{l—"e— " pt+Ye4 2 247
) < 7 "ttt i ”) (1.67)
S 9 25 5, 665 , , 415
B=ia°(1——e—3 bk + =S¢ )
2= 7 T B T T T
The coefficients P,, ¢, R, in equation (1:60) are
8 3 20 25 64
Po=(1— —_e— e 4 2=
’ ( A A VYA +98"+147">
8 11 20 ,, 235 272
Q=(1— ¢+ + e+ Tyt 222 .
% ( 2R R VT A T A YT ")k (1-68)
5
7

7
_ 3,125, 95, 62
Tyttt 1w ")

* Bull, Geod., 38, 1933, 178-87.
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If 1, denotes the value of the potential on the ellipsoid, we

have
1

1 0 0
W, = ;fMAoo'*‘ ’O‘m"[Bl (Ajp—PAyy) + By (Ayy— Ay ) ],
where A, is the value of V¥, (%) for u=0.
Substituting the values of the various constants, we obtain
fM

a

By equation (1-62)

o = DM _ o (2B, p)
“a \ abe

be

W, = []-i—% +%m+{n+—e—lm+]mejl

15 2 3

= fi‘{(1+e+n+e~+n +en) — w’a (_+, + 29

\]OJ

125 , 80 , 46
+ €4+ —— g4
201t T ar )
:j ) a 9 o 2
- f;n[( T+etn— ?j m e+ + Zm"-ken—%j‘ ™ e
_ ;”_4 1717)) e (1:69)
where :Efﬁtzw@(] R s
g0 M 2 M
The other two constants involved in equation (1-63) are given
by
x
P = ;)m +e — 2_76m€ 0€+;E_mn
- 7
(1-70)
¢ =—2n+7° + %)mn

In equation (1-65), the coefficients of the various terms inside
the bracket, correct to order €°, are

9 5 1, 26
5(62“+2p)=—e+—;—m+§e~~7me
i 210, =
Sl +29)=—7 L. (1:71)
x4
% (Bet+4p) = ;me—é—e2

Equation (1-65) may also be written as
s =g (1- ;n ) [1+47sint g — 1 sin? 24
+ (" cos® ¢ cos ‘.’I;‘
= G'(1+ 4 sin’ ¢ — B sin* 2¢ + ' cos’ P cos 2L), (1:72)
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where
A'=—e+% +%17 4”76 )
B’ gme—-%e2
Cc’ =—i77
2 . L (1-73)
1!’= g” (1_57’)
=-fj;[(1+e+%n— gm—}-eg-}-g‘« m?
27
—ﬂme) J

This is the form in which the formula for normal gravity is usually
expressed, as we shall see in the next chapter.

Tt is interesting to compare formula (172 ) with the correspond-
ing formula (1-15) for a static homogeneous triaxial ellipsoid.
The two formule are similar. By a simple manipulation, equation
(1-72) may be written as

f M (1 + D" + 4" sin’¢— B” sin? 2 + C” cos’e cos 21,), (1-74)

where D” = ¢ + %7) %m-i— € +%m2_?_zm€
AI/ — —€+ _5_m+_1_77_€2_ _1_5m2+8~9m€
i : 14 (1-75)

B’ =Efme—le2 (

8 8

1
o = 1o

277

The values of the constants are now directly comparable with
those of equation (1:15). We see that the coefficients are quite
different in the two cases, the reason being that formula (1-72)
pertains to a level surface, while (1:15) does not.

To see how far the static homogeneous triaxial ellipsoid de-
viates from a level surface, we will work out the angle x which the
gravity vector at a point (¢, L) on it makes with the normal.
Obviously,
cos ¢ cos L g,+cos ¢ sin L g,+sin ¢ g

9
Substituting the values for ¢, ¢,, ¢. and ¢ from equations (1-12)
and (1-13) and simplifying, we have

cos x =

cosy = 1— 23562 sin” 2¢,

This equation shows that x attains its maximum value at ¢ = 45°.
For ¢ = 337, this value amounts to about 5 min. of are.
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Another point to which attention might well be directed is to
compare the expressions (1-7) and (1-52) for the external poten-
tials of an ellipsoid. Omitting the term arising from the cen trifugal
force in equation (1-52) and bearing in mind that V () =
for v =0, we see that this expression becomes identical with (17 ) if

b
= 2TfPY (93— gen)
3 o

5
and B, = ;%, _7rf_pna_ (2e—27—3e*+379*)
w?

These values of B, B, are different from the ones obtained in
(1:67). A little consideration shows, however, that the orders of
magnitude are the same. The discrepancy is due to the fact that
By, B, of equation {(1-67) appertain to a rotating ellipsoid, on which
the potential is constant, while our present values correspond to an
ordinary static ellipsoid.

We will now consider the important case when the level surface
is an oblate spheroid. The appropriate expression for the external
potential function in this case is

W=A0V0+A1V1+%w2(m9+y9), we  (1:76)
where
« ds ds
VO:[ [ (1—%2—'_?/ -2 — (1:77)
wA/ Y (s a’+s o +s) 4 (s)
and ¥ (s) = (a +5)? (c?+s).
The condition W= W, for u=0 gives
wW,= A 0 Ao+ A, (Agy—c? 4sy) )
1 c(1+e'2)
=2 M 2
4, f +3 (8+¢€?) (' —tan~1¢") 1
gy T L. (1:78)
A= _1 203(1+e'2)
' 29 (8+¢7) (¢—tan"le') _,~
e
2__ 2 ¢ /
where ¢2 =% _26
¢

Proceeding in the same way as for a triaxial ellipsoid, we have

= "(1+e’2cos qS)+20A (14 ¢?cos? qb) (¢ —tan~l¢').

(1-79)

If G. and @, denote the values of gravity at the equator and pole
respectively, we have

T3 a
e3e3

A= 2(;4 (1+¢2) +204 [ (e'—tan—le')](1+e'2)_"
o4 . (1:80)
= =0 L -1,
Gy | +2c 4, m(e tan le)].
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Hence *
_ aG.cos®p + ¢ @, sin’ ¢
(a® cos®* ¢ + c*sin®¢ )3
in?
aQ, 1+ psin® ¢
Vv 1—é*sin’® ¢

(1-82)

=Ge[1 +%(62+2p) 24(30 +4‘P)Slnt¢|'
1.3...... (2n—3)§ _ 0 2 o .
Toa o (U A B et 1 (e
— CG;J— Ge_ .3_(6 —c
where p = G and ¢ = -

The values of the various constants have been worked out

in terms of the ellipticity e with the following results :
5 1 11, 23
=, M—2wtar (- -1+ 22
B TA S G R T T

5mf. 3 9, 3 3 65
=_ —22{1== + m~ - 7 2)
M [1 46( 2 T I T ™ T 14t 1og

= %%“’2“3 E _%+12936 ]
=%’;fM’l:(1—;3m+zm9—2me+%e+%e‘~’)

v 0=.f;i’_[(1+ ée+é +13'5 2—;m2+§me>

G, =f(f_if —Z w?a (1+—$€)
=Jg§€(1+e—%m+%mz+ - “Zme)

G”=L;f;—{+ 0’a (1—%6)
-—Jz:[(1+m+£me——m2)

P gm 2¢+ 6 — ?me.

Equation (1:81) may also be written in the formt
g =G (1+A4"sin*¢p—B sin*2 ¢ — B, sin® psin?2 ¢

.
]

—Bysint¢sin?2¢—......... )s
where
, _Gy=G,_5 5 (17 1, 13 , )
A== e‘ém(3,+245 AT A
B'=%e(e+2A')
B,=é (2e+‘3A)——— 53(‘3e+4A) ete.

(1-84)

(1-85)

(1-86)

# Bull. geod. 38, 1933, 178-87.
4+ Ibid 2B, 1930, 40-49,
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This is an extension of equation (1:35) based on Helmert’s theory.
Helmert included only terms up to the second order in ¢, and con-
sidered the first three terms of the series expansion. Equation (1-85)
can be written down to any number of terms that we like, the law
of coeficients being known. The same applies to formula (1:65)
for the case of an ellipsoid with unequal axes, which can easily be
extended to include higher order terms. For computing theoretical
gravity, however, the normal gravity formule usually take into
account only terms up to order €* (see chap. 11).

solution. The potential
w=1Y % w*? cos*d + U,
,
must be a constant on the sphere. This suggests that U, should be
AP,
i
r=« determines the constant 4, and gives
'WI w’a’®
w=J/%
r 31
The surface being level, the resultant gravity isalong the normal,
and is given by

of the form The boundary condition that W is a constant for

P + ; w*r* cos® 0. (1'87)

=-5-=3 + — P, — @&’r cos®d
=f_a151+w @ P,—w'a cos® f. ... (1-88)

7. Clairaut’s equation.—Neglecting the longitude term in
equation (1-25), the value of gravity on the level spheroid becomes

LI e (w9 3
q e 1+ 5y fﬂ[+ yili ‘)r sin*@

This expression for gravity is deduced from the equation (1:25)
for the potential by assuming 4=B. If a, ¢ denote the lengths
of the equatorial and polar semi-axes, and G., G, the conespondmg
values of gravity at their extremities, we have

Q. = JM 1+ 3K 1‘(1,_’)
2 2a* M
[ c”

Putting € =*"° and K = 1 (C—A4) we have
a M

G.—@ 5
Ll =¢€c+e&+em—_-m
G, 2

-2 21 o (1-89),

| oRr
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This relation between the values of gravity at the equator and
the pole is correct to first order terms ine, and is known as
Clairaut’s equation.

For a true spheroid, the above may be deduced by eliminating
4, between the two equations (1:80). We get

G.— EGP= 2cA1|: 2 (¢’ —tan~l¢’ :l(l—}-e ) R

e3c3

—2¢A [ 5 5(e —tan~le )] (1+e'2)%,

which when simplified leads to equation (1-89).

It might be noted that the ellipticity e and the difference
(Gp—G.) vary in opposite directions. The value of (G,—G.) is
maximum for a spherical level surface. By (1-88) we see that for
such a swrface it is given by

G,—G. _ 50a
G 26
Another relation which follows from equations (1-84) is

2fg + Ci.p =4“”'me""2&)2,

where p,, denotes the mean density of the matter inside the spheroid.

8. Values of gravity at the extremities of the prin-
cipal axes of a triaxial ellipsoid.—For a triaxial ellipsoid,
the relations between the values of gravity at the extremities of the
principal axes can be derived from equations (1:62). Denoting
these by ( ¢ey 945 9c ), we have

g _ 9 — _ 20° B 9(}__})
b ¢ abe’ b2+w b* c? B

5 18 4

<o enty)
go _ 9o _ 20 B 2(1 1)E
c a abe’ o JER-

5 ,(1 18 | 2 (1:90)

Jo _ 9 . 297 @_El) z(l_l)
a b abc \ B o° te R B

_ 19,

7

The relative orders of magnitude of (g., ¢, g.) can also be
obtained from equations (1-62) by substitution of the values for
B, and B,. After some simplification, we have

ﬂV[( 3 9 _27 37 )
Ju = 5 l1+e+n— 5m+e +") +4m + ey Eme ﬁ‘fm/r;
Jb—ﬂn(1+€ S m+ € ?Zme+z +%mn)

7 2 3 5, 6
e = f;2’(1+7)+m+n‘—- %m'+ gme + Z;mn )



29

Hence
M 59

ﬂa-gb=fa—g-’7[1+€—ﬂm+n], . (1-91)
’ 0 3 9 45

9o — Ya =ﬂl2[ l:—g-m—e—e"— %m" —€en + ?4 m e+ ﬁ'm/r):l_(l-QZ)

For the values of e, m appropriate to the earth, the above two
equations show that g, > g. > ¢s, an important result, which is by
no means obvious at first sight. ¢. will be less than g,, if
51)—2 m—e> 1 orif 0*> 4x10 sec
This will occur for a rotating body whose period of rotation is less
than 28 hours.

9. Summary.—We have discussed above, different methods
of determining the gravity formule. Helmert’s method consists
in selecting some special terms from the general expression (1-24)
for the potential. This modified potential defines his level spheroid
and leads to the value of gravity on it. Darwin’s method is practi-
cally identical.

-0
Y

Pizetti’s method gives rigorous expressions for gravity on an
equipotential sphere, spheroid and triaxial ellipsoid. These formulae
can be expanded in series, and we can take as many terms as
are necessary for the accuracy aimed at. To obtain terms beyond
the third by Helmert’s method requires great labour. In formula
(1-85) for example, five terms are given, while the corresponding
Helmert’s formula gives three terms. Again, in Helmert’s method,
in the expression for the coefficients of the gravity formula, terms
beyond order €* are neglected as they involve laborious calcula-
tions, while Pizetti’s method includes higher order terms.

Given the dimensions of a spheroid, the constants of the gravity
formula appertaining to it can be derived to any accuracy that
we like by Pizetti’s method, but not by Helmert’s and Darwin’s
methods. For example, for the International spheroid, values of
normal gravity can be computed to four places of decimals by the
formula y,=978-049 (14 52884 x 107 sin* ¢ —59 x 10~ 7 sin? 2 ¢ ).
When however 6-figure accuracy is wanted, one more term as given
by Pizetti’s formula (1°85) is required. It might be remarked, however,
that with the present degree of accuracy of gravity measurements,
the values of normal gravity to six decimal places are of academic
interest only. For all practical purposes, Helmert’s formule are
good enough,

Stokes’ formula (1:19) for gravity is based on first order
considerations, and is not accurate enough to be used either for
normal gravity, or for the determination of ellipticity. But we
shall see in chapter v that his formula is very valuable for deter-
mining the undulations of the geoid with respect to a suitably
chosen reference surface.
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GRAVITY FORMULZA AS OBTAINED IN PRACTICE,
AND THEIR COMPARISON WITH THE
THEORETICAL FORMULZA

1. Method of deriving gravity formule.—We see from
the theoretical considerations of the preceding chapter how we can
determine the form of a level surtface from the variations of gravity
on it. The swrface of the earth is not an equipotential, and to
make the above theory applicable, the observed values of gravity are
reduced to the geoid by a suitable reduction. If the geoid were a
true spheroid, observations of gravity at three known points would
enable us to define it. If it were a triaxial ellipsoid, knowledge of
gravity at four points would be required. In practice, however, to
obtain reliable values of the constants in gravity formula, it is
customary to make use of all the available gravity data and apply
the method of least squares. The geoidal values of gravity have
been fitted to formule of the type

g =G (1 +d sin°p — B sin°2¢)
and ¢ = G’ [1+ 4" sin*¢ — B’ sin*2¢+ (" cos’¢ cos 2 (L—1L,) ]
by various investigators, and the results are tabulated in the next

para. As we have seen already, these formule take account of only
terms up to the second order in the ellipticity e.

Acker]l ¥, using Prey’s reduction, has expressed the gravity field
of the earth in terms of spherical harmonic functions up to the 16th
order. He undertook these laborious calculations with a view to
utilising them for finding the undulations of the geoid. We shall
see in chap. v that this has not proved a fruitful field of research
as Prey’s anomalies are unsuitable for this purpose.

2. Gravity formule.—The following are the main gravity
formul:e which have been obtained at various times. The relevant
values of ellipticity of the level surface, and the constant y defining
its departure from a true spheroid " (see page 15) are given below
each formula. The relation between x and the coefticient of sin?*¢ in
the gravity formule will be explained in the next para. ¢, denotes
normal gravity.

( 1) Helmert 1901,
Yo = 978:030 [ 145302 x 10~ 6sin* ¢ —7 x 10~ 6sin*2¢ ],

€ = *2'9’%5’?6 =—205x 10",

* Akad. Wien, sitz.-ber. d. mathem. naturw, kL (11a), 140, 1931 and 141, 1932
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(11) De Sitter 1927,

Yo = 978-:052 [ 1+ 52884 x 1077 sin®p—75x 10~7 sin®2¢ ],
1
B =—-20 _8_ L]
596-96 £ 0-10° X = —205x10
(12) International spheroid.
Yo = 978-049 [ 1+ 52884 x 10~7 sin*p—59 x 10~7 sin?2¢ ],
1

= 1 —0.
€= 997 X

(13) Jeffreys 1936.
Yo = 978-051 [1+5282 x 1076 sin®¢p— 7 x 107 sin® 2¢ ],

— 1 —_ —8
= 396-3840.51° X~ T205x107%

3. Interpretation of the constants.—The constant B’ in
the formula g=G. (1+ 4" sin®¢ —B’sin’ 2¢) is a small quantity,
its magnitude being about 1/800 times that of A’, and it has been
found that it cannot be deduced by least square solution with any
accuracy. Its value has to be assigned in some other way. By
Helmert’s theory, B = — %é + —g me — g x for a level spheroid.
The value of x has been inferred by Darwin from two quite different
assumptions about the internal constitution of the earth. He first
assumed Roche’s law of density, and obtained y = —205x 10-%,
Then he used Wiechert’s law that the earth consists of a solid
core of density 8-206, on which is superposed a mantle of density
3:2, and deduced x = — 175x 1078, Taking y = — 205x 1078,
m =gge and € = 27}8’ we get B'=7x 10786,

The quantity 7 x 107¢ sin®*2 ¢ which occurs in most of the
gravity formule is thus based on theoretical considerations. The
magnitude of this term is 7 x 10*> x 10~6sin® 2 ¢ gals. The
maximum value that it can attain is 0-007 gals, which is quite
appreciable. In India the magnitude of this term ranges from 0-0005
to 0-0063 gals. Darwin’s work shows that the figure 7 x 106
for B’ is quite insensitive to the hypothesis about the internal
constitution of the earth. It appertains to a level spheroid,
depressed below an exact spheroid by about 10 feet in latitude 45°.

For a true spheroid, we see from (1-36) that B’ = —18—e (5m —e).
Knowing m and ¢ we can get the value of B". As an example we

1 1 . .
58856~ 997 for the International spheroid. These
values give B’ = 5869 x 109,

From the foregoing discussion, we infer that if the value of B’
18 agsigned in a normal gravity formula, it implies a radial departure
of the level spheroid from a true spheroid having the same
ellipticity by

have m =

It

.
3 a sin® @ cos® @ (— ée“+ gme—B').
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The remaining constants in the gravity formula are derived
from least square solution. Helmert’s* 1915 formula was de-
duced by him from 8000 stations reduced by free-air. Formulz
(7) and (8) were computed by Heiskanent with the aid of 656
stations, the one with the longitude term and the other without it.
All stations in the same degree sheet were treated as a single station.
In other words, he used 656 degree squares on the globe. In 1928,
using 841 squares and including the longitude termi he obtained
formula (9 ), while without the L-term he obtained

¥,=978:044 [ 1 +5301 x 10~6sin®p—7 x 10~ 6sin*2¢ ]. ...(2-1)

Formula {10) was based on much more data, there being 1591
squares. Heiskanen used isostatically reduced values of gravity and
omitted the stations on islands and ocean deeps where the isostatic
anomalies are large. He also did not consider the squares in the
Red Sea since the anomalies there are all highly positive.

G, denotes the equatorial value of gravity. Its values found
by different authors utilizing different observation material range
from 978-030 to 978:052. The differences are partly due to the
values of gravity being reduced to the geoid in different ways and
partly due to the different location and extent of the gravity data.
The spread of the gravity observations used is probably responsible
for a greater part of the discrepancy.

When the longitude term is included in the gravity formula, .
has to be replaced by G’ which denotes the mean value of the equa-
torial gravity. According to Heiskanen’s latest formula,

G’ = 978-052.

The use of different gravity formule by different countries is
obviously undesirable. The adoption of the International spheroid
by the International Union of Geodesy and Geophysics at the Madrid
meeting in 1924 as a standard basis for astronomico-geodetic work
also led to the demand for a universal gravity formula. The first
step towards this objective was to fix a value for (.. Silvay sug-
gested that G. = 978-049 was the best value, as it would secure
the best agreement with the observed values of gravity.

The dimensions of the International spheroid are

a = 6,378,388 metres = 20,926,488 03 feet, );
e = L
297°
o 2 _
Substituting (1, = 978-049, w = sfomL“ = 7,292,115 x 101 and
the above values of a,e in (136 ), we have
A" = 5,288,384 x 109 } (2:2)
B = 5860x10-" ==

* Sitzungsberichte der K. Prou. Akad, der Wiss. 41, 1915, 676-80.
TVe?nﬂ’. de Finnischen Geod. Inst. 4, 1924, ohap. 111,
I leiskanen. Gerl. Beit, . Geoph. 19, 1928, 366-77.
§ Aocad,-Nazionale dei Lincei, 1930,
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In the International formula (12) therefore, . is deduced
from the various least square solutions, and 4’, B’ from theoretical
expressions for gravity ona spheroid.

An important fact about ., which is worth mentioning, is that
it fixes the mass, and hence the mean density of the equipotential
surface. Thus for a spheroid («, € ) we have from equation (1-84)

G, _ 4 _ . 3 , 2 R

?='§7TJ‘P‘:L——;—‘0‘(1+7G)a (2'0)
where p,, denotes the mean density of the matter inside the spheroid.
Taking ¢, = 978-049, 0*> = 0:5256 x 10 % and f= 6:675 x 107%,
the above equation gives the value of p, for the International

spheroid (a = 6+378388 x 10°cm., € =—2%) to be

pu =5+5124 gm./em?.
The corresponding value in the case of the Everest spheroid

=06 08 . = __ )1
(a 6377276 x 10 em., € 300-8)15
pn =5+5133 gm./cm?.
The constant 4’ is very important, as it gives a clue to the
ellipticity e of the level surface. From formula (1-36) we see that

it depends on both € and m, where m = Y% In other words, the

e

value of this constant depends on the value chosen for the equatorial
gravity. The variation is small however. A change of 1 x 1073 in G,
corresponds to a change of 8:8 x 1072 in 4.

The following table gives the variation of A’ with e for the
1 X
fm=_——-___ T = - 04 1
value of m 588361’ which corresponds to (¢, = 978:049 anc
a =06,378,388 metres.

A, A’

290 | 107% x 5207 | 296 | 107% x 5277
291 | 1078 x 5219 | 297 | 107¢ x 5288
292 | 107% x 5231 | 298 | 107¢ x 5300
293 1.()‘G x 5242 1 299 | 1078 x 5311
294 | 1075 x 5254 | 300 | 1078 x 5322
295 | 107% x 5266

Adopting the values of (/. and B’ as given above, this table
«nables the formula for normal gravity to be written for any given



35

spheroid. As an example, we mow that for Clarke’s 1880 spheroid,
€= 29—§—5 The value of 4’ corresponding to this is 5248 x 1076,
The expression for gravity on Clarke’s spheroid is therefore
vo = 978049 (1 + 5248 x 1076 sin*¢ — 6 x 1076 sin®2¢).
We see that a change of 12 x 107 in 4’ corresponds to a change

of 1in -1— This enables us to decide what order terms should be
€

retained in the expression for 4’. If we are content to obtain 1

€
to one place of decimal, it suffices to retain terms up to order
¢ (=11x107%), Terms of order € amount to 3 x 1078, and will

have no effect on the first place of decimal in 1 Stokes’ formula

(1:19), based on first order considerations 1mphes that A'=3m —e.

The value of the reciprocal of the elliptlclty deduced from this
relation may be wrong by one unit.

Another method of determining the ellipticity which does not

involve least squares is to make use of the equation (1-29), namely

3K 1

202 — 7T 2

The values of the constants K and & are assigned from certain

considerations, which will be dealt with in the next chapter, and
the value of ¢ is deduced therefrom.

1 3
m—e +—-em + Z’mf’ 73.

The range of ¢ evidenced by the gravity formule varies from

251)—2 to ﬁ . Like G, this range is due to the use ( or availability)
of different areas of gravity survey. The value of ¢ deduced from

gravity data depends of course on the gravity reduction employed.

4. Tables for normal gravity.—G. Cassinis* has published
tables giving the values of gravity on the International spheroid,
correct to three and four p]aces of decimals. For this accuracy the
formula y,=978-049 (1+ 52884 x 1077 sin®*¢p—59x10-7 sin® 2¢ )
is sufficient. W.D. Lambert and F. W. Darlingt have tabulated
these values to 6 places of decimals. For this they had to include
one more term, involving sin®¢, in the above formula. As men-
tioned at the end of the preceding chapter, this is a far higher
accuracy than what is required in practice.

The change of normal gravity with ¢is given by g;;" =Q@Q. 4

sin 2<;b The change is most rapid at mid-latitudes (about 0-1 mgal
per 1° latitude ), and is zero at the equator and the pole.

5. The Longitude term and its significance.—Formula
(2,3,8, 9and 10) of para 2 are important- as they contain a

* Bull. Geod, 1931, 313, Hoe also glvu n tn.bl(\ for tonveltm: _rrrwltv fmm
International to Helmert's 1901 and Bowie's 1917 formulwe,
t Bull. Geod, 1931, 327,
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longitude term which has provoked considerable discussion. From
equation (1-22), we see that the coefficient of this term is i,
where 7 denotes the ellipticity of the equator. The difference (a—b)
between the semi-equatorial axes, the equatorial ellipticity % and
the positions of the principal axes as given by the various formula
are tabulated below :

Longitude L, of

in r?lgﬁfes n major axis
Helmert 1915 230 + 40 36 x 10-6 —17°+6°
Berroth 1916 150 + 60 23 x 1076 —10
Heiskanen 1924 345 + 40 54 x 106 —18 +5
Heiskanen 1928 242 + 40 38 x 1076 0+5
Heiskanen 1938 352 4+ 30 56 x 1076 —25 42
Hirvonen 1933 139 + 16 22 x 1076 —19 +3

I, denotes the longitude of one end of the major axis, reckoned
positive east of Greenwich meridian.

It may be pointed out that the probable error of Hirvonen’s
1933 result is least, not because it is the best determination, but
because he used only a few points for its deduction.

Several attempts have been made to determine the ellipticity
of the equator from arc measurements. As early as 1861 Clarke
using three long arcs, the Russian, Franco-English and Indian, found
by a least square solution the values for the difference of equatorial
semi-axes and the position of major axis of the equator to be

a—b = 1620 metres, L, = —14°.

Using arc measurements in Europe and the United States,
Heiskanen* found

a—b = (165+57) metres, I, = + 38°+10°.

It has been contended by some geodesistst, that the actual
geoid has a circular equator and that the longitude term in the
gravity formule is introduced spuriously by the reduction employed,
namely free-air or isostatic. Mader, by laborious computations,
proved that if the average height of the continents be taken as
0-8 km., they would produce ¢« —b = 268 metres if they were un-
compensated, and «—b = 278 metres if they were compensated.
His figure of 278 metres for the compensated geoid is however not
correct §, as he wrongly applied topographic reduction twice in his
working.

Jung§ has worked out the effect of different mass types in
producing the difference (B—A4) of the principal equatorial mo-
ments of inertia of the earth. A brief summary of his results is
interesting. Taking the earth to be non-isostatic, the effect of

¥ Heiskanen, Veroffen. des Finnischen Geodit. Inst. No. 12, 1929,
+ Mader, Gerl. Beit, Z. Geoph. 18, 1927, 145-184.
Hopfner, ,, 5 " 20, 1928,
1 Heiskanen, ibid.
§ Jung, Zeit, £, Geoph, Jahr, 4, Heft. 1,
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superposing the continents and oceans on a homogeneous spherical

0

earth is to produce (B—4) = 5:2x10 c.g.s. The corresponding
difference in the equatorial semi-axes is (a—b)=200 metres, and
Ly=86° 1In other words, the superposition of continents and oceans
as a load on a homogeneous spherical earth produces a longitude
term 31 x 1076 cos 2 ( I, — 86°) in gravity. In this computation, the
continents are assumed to be of uniform height 08 km. and density
3:2, and the oceans of uniform depth 0-4 km. and density 2-2.

For compensated continents and oceans, the corresponding
results on the assumption of a depth of compensation of 80 km. are

B—Ad=13x10 . g.s., a—b = 5 metres and I, = 86°.

Hence the («—b) of the compensated geoid can differ only by
about 5 or 10 metres from that of the actua] geoid, and this is a
very small fraction of the amount suggested by the or av1ty formulze.
Prey * also obtains the same result for the ellipticity of the equator
produced by isostatic mass transfers.

The free-air and condensation reductions have also a negligible
effect. Hence it is impossible to explain the values of (B—A)
derived from gravity formuli by assuming that these are falla-
ciously introduced by the reductions employed.

Several types of density inequalities can Dbe postulated to
account for the longitude term. Schweydar has pointed out that
a difference in density of 001 between layers 200 km. thick under
the Atlantic and Indian Oceans would produce a systematic term of
this type with amplitude 36 x 106,

Similarly, Berrotht has shown that if the highlands of Central
Asia ( considered as bounded by ¢ =25° to 50° and L=80° to 110°)
had a defect in density of 0-20 up to the depth of compensation, they
would produce the above L-term. Of course, the actual observations
in this region do not show such a large defect of density. The
above only gives an idea of how much mass anomaly is needed.

Again, consider a sphere with a surface coating on it equiva-
lent to a thickness Y, of material of normal crustal (1enslty
2:7. We shall see in chap. 1v, para 7, that if this inequality is
compensated according to Airy’s hypothes1s at a depth of
compensation 35 1n11es, then Ag = 0-0013 gals for Y, = 1 mile.
If this inequality were uncompensated, Ag would be 0-07 gals.
For an L-term with an amplitude of 0:02 gals to be poss1ble
for an isostatic crust floating on a substratum, the solid surface of
the earth must deviate from a spheroid of equal volume by about
15 miles, which we do not find to be the case in nature. If we
assume this harmonic to be due to departures from isostasy, it can
easily be shown that these are equivalent to a surface coating of
thickness of about 2,000 feet of normal crustal de1151ty Wide-spr read

* Prey, Gerl. Beit. z Geoph. 36, 1932, 242-68,
t Berroth, Gerl. Beit, z, Geoph. 14, 1916, 245,



38

inequalities of such an extent lead to important physical implications.
They produce considerable stresses which have to be borne by the
rocks of earth’s ecrust. The problems of the possible magnitude of
stresses due to visible surface inequalities and the strength of the
earth’s crust are of fundamental importance, and have been con-
sidered by Darwin* and more recently in a thorough manner by
Jeffreys.t There is no means of knowing the exact stress distribu-
tion inside the earth, as an infinite number of stress distributions
can be found which will support the surface inequalities.

We shall see in chap. 1v, para 6, that the gravity anomalies in
India’point to the existence of regions where there are departures
from’isostasy equivalent to a thickuess of about 2,000 feet of
surface rock. In the light of Jeffreys’ work such loadings can easily
be supported by the crust. Difficulties arise, however, in explaining
the support of loads of considerable horizontal extent as implied in
Heiskanen’s longitude term. Jeffreys concludes that the mechanism
of compensation (implying, as it does, hydrostatic conditions under
the crust) demands a greater strength in the upper layers than we
should need without compensation. Wide-spread inequalities of
2,000 feet of surface rock produce stresses which would require an
impossible strength if they were to be supported by the upper layers
alone. They require a strength in the lower layer (i.e. below 50 km.),
which controverts the popular belief that below 50 km. there is
hydrostatic equilibrium. This is also borne out by the phenomenon
of deep-focus earthquakes. If materials at depths beyond 50 km.
were entirely devoid of strength, it would not be possible for them
to accummulate stresses, the release of which is essential for the
production of an earthquake. An alternative mechanism for the
support of these loadings ot the crust has been brought forward by
Meinesz.i Tt is based on the hypothesis that the disturbances of
equilibrium are adjusted by convection ecurrents in the substratum,

Tt has sometimes been argued against the longitude term that
the level surface may be a spheroid, but being heterogeneous the
principal equatorial moments of inertia may be different. In this
case there would be a (B—A4) term in the gravity formula in
spite of the equator being circular. This is however not possible,
because the potential of a heterogeneous body according to equation
(1-24) is

M A+]) . ( . 9 1
7 _ 29 — -
W= - 1-— 21 2 C) sin*@ 3)

+— i M ~ (B—A)cos*f cosZL} +JC—TI:L3 + ... -1—%:»91'2 cos’ .
If its outer surface is to be a spheroid, W must become constant
for =« (1— esin*@). This can only happen when the longitude
term is zero.  If then a heterogeneous spheroid is to be a ﬁoule of
equilibrium of masses within 1t its internal masses must be so
constituted that the equatm ial moments of inertia are equal.

* Da.rwm, Scientific Pa,pels 2, 181-84,
+ M. N.R. A.S. Geoph. Suppl,, 3, 1932, 30; 2, 1932, 60,
1 Meinesz, Gravity Expedltlons at Sen, 2, 1923-32, 54.




39

Thus, while one cannot cavil at the longitude term from
a priori considerations, there is no denying the fact that it has not
been strongly determined, because the data are confined to only a
very limited portion of the globe. Heiskanen derived his formula
[7) of para 2 from 656 gravity stations in Europe, Africa, America
and Asia, and found that the introduction of a longitude term [as
in formula (8)] decreased the sum of the squares of the anomalies. In
1928%, with more data at his disposal ( 841 stations including 137
sea stations of V. Meinesz) he obtained formula (9). His 1938
formula comprises about double the above number of stations.t A
comparison of the various formulic reveals that the amplitude of
the longitude term is changed from 19 x 1076 to 28 x 1075, and the
osition of the major axis has a range of 43°. In view of the above,
it is not unreasonable to surmise that when homogeneous gravity
data become available over the whole globe, we might get an
entirely different value for this term.

Jeffreysi argues that only two harmonics cos?#cos 2L and
cos’ @ sin 21 of the second degree have been used for analysing the
observed gravity anomalies. The Laplace’s function Y contains
the terms

15 . cos 2L

5 cos 0 (7sin*f—1)x {sin 9T
These terms give the same kind of variation in the equatorial
ellipticity as the second order terms 3 cos®8 cos 2L, 3 cos® 6 sin 2L.
It these fourth order harmonics are present and are not separated
by an analysis over different latitudes @, they will affect the estimated
values of the second harmonic. He advocates developing the
expression for gravity in spherical harmonics up to terms of the
fourth order, and then applying it to deduce the figure of the earth.
But Y;, ¥,, etc. also contain terms that contribute to equatorial
ellipticity. The above will therefore lead to useful results only if Y,,
Y, Y, etc. are in rapidly descending order of magnitude. It is
hard to say whether this would actually be the case. The leading
terms represent inequalities of wide extent, and their numerical
Zalues may not necessarily be greater than those of the succeeding
erms,

, 6. International gravity formula. — The formula
Yo=978-049 (14 52884 x 10~ 7sin* ¢ — 59 x 107 7sin® 2 ¢) was adopted
at the meeting of the International Association of Geodesy in 1930
at Stockholm as the International gravity formula. The significance
of its various terms and the method of their derivation have been
discussed in para 8. The coeflicient of the sin®¢ term corresponds
to the value of €=53+. This value has been obtained from deflection
data in U.S., which is only 1:6% of the area of the whole
earth. The main consideration in the adoption of this formula was
to ensure uniformity in the expression of gravity anomalies in
different countries. It is obvious that the complicated gravity

* Heiskanen, Gerl. Beit. z. Geoph. 19, 1928, 356-77.

t Heiskancn, Publications of the Isostatic Institute of the International Associn-
tion of (teodesy, No. 1, 1938.

1 Jeffreys, Gerl. Beit, z. Geoph, 306, 1932, 210,
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distribution on the globe would require more elaborate formula for
its adequate representation. For example, the gravity anomalies
in India based on this formula are shown in chart x1, Survey of
India Geodetic Report 1938. The negative values are strikingly
predominant, indicating that this formula does not fit India well.
Anomalies with respect to Helmert’s 1901 formula are shown in
chart x, Survey of India Geodetic Report 1938, and are obviously
more balanced.

In East Africa also, Bullard’s* work shows that the Hayford
anomalies with respect to the International spheroid are predom-
inantly negative. A suitable longitude term can be introduced
to give a positive correction to Ag’s, so that the preponderance
of negative values is decreased. As it happens, the longitude term
found by Heiskanen [gravity formula (10)] gives such a positive

correction to the anomalies in India. Its value at some points is
tabulated below:

Point 978-052 x 28 x 10~ ¢ cos (2 L+ 50°) cos* ¢
o ° mgals
L= 64, =26 —22
L= 78 ¢$=32 —18
¢=28 —~19
¢=16 —23
$=12 —24
= 92, =26 —13
b=12 —15
L=100, $=28 _ 7
=16 — 9
$=12 -9

If the gravity anomalies are reckoned with respect to the
International formula, the longitude terms of the formule (2,
3, 8, 9 and 10) all give a positive correction of about 18 mgals ‘qo
the anomalies in India. It is obvious then that so far as India 18
concerned, the triaxial formulwe will give the same anomalies as
Helmert’s 1901 formula, since the value of G- in the latter formula
is about 20 mgals less.

One reason for introducing more harmonics in the gravity
formula has been already given in the last para. We shall discuss
this further in chapter v, para 7. With the present gravity
material however, it is not possible to improve on the International
formula with any measure of certainty. This can be seen from the
fact that one obtains widely different results for the longitude term
according to the number and location of the gravity stations used.

7. Summary.—Gravity observations and arc measurements
show that a triaxial ellipsoid fits the geoid better than a spheroid
does, but the ellipticity of the geoidal equator is not proved indis-
putably. This is due to the fact that the data on which the above fit 18

* M.N.R.A.S, Geoph. Suppl,, 4, 1937, 101.
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based are too scanty, being derived from only a very limited portion
of the globe. The International gravity formula is by no means a
very good fit to the actual observed values of gravity, as can be seen
by the large gravity anomalies in India, Gultf of Mexico, Caribbean
Sea and the BEast Indies. It shows that more gravity observations
are needed and more harmonics should be introduced in the gravity
formula. TUntil this is done the question of the ellipticity of the
equator will remain open.

It is to be remarked that the gravity values used in deriving the
best gravity formula should be in terms of the same or well-connected
base stations. If for example all American values were smaller or
greater than European, an L-term would obviously appear.
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FIGURES OF EQUILIBRIUM OF A ROTATING
EARTH, AND ELLIPTICITIES OF STRATA
OF EQUAL DENSITY INSIDE THE EARTH

1. Level surface of a homogeneous rotating fluid.—
In the preceding chapter we have found the ellipticity of the level
spheroid from the gravity values on it on the assumption that the
bounding surface of the rotating mass is vearly spherical and is
at the same time an equipotential. We shall now see how we can
determine the ellipticity when the internal law of density is known,

If we imagine the earth to be a fluid, elementary hydrostatics
enables us to write down the conditions for its equilibrium. The
form of its free surface cannot however be found in general. But
useful results can be obtained by assuming a formn for the free sur-
face and then seeing whether it is a possible form of equilibrium or
not. The theory is dealt with in the usual text-books. We will
enumerate here some salient points.

The usual condition of equilibrium of an element of a fluid
mass rotating with angular velocity  is
dp=p [((X+e%) de+ (Y+o¥y) dy+ 7 dz], we. (8°1)
where dp is the resultant pressure on the element, and X+ o',
Y + w’y, Z are the components of the resulting force.

If the form of the outer surface of thls ﬂu1d (whlch is an
equipotential ) be assumed to be the spheroid - cy + 2 =1,
o

must have
X+ _Y+oly _ Z
ol Tyt ozl
X, Y, Z are the components of the force due to a static spheroid.
Assuming the spheroid to be of uniform density p and substituting
the values of X, Y, Z (see chap. 1, para 4) in (3:2), we obtain the
following conditions for equilibrium:

(3-2)

2
If 2—-:f.P > 0-2247, an oblate spheroid is 1ot a possible form.

If % < 02247, two spheroidal forms are possible. In the
2mfp

above, f denotes the gravitational constant; its numerical value
is taken as 6:6 x 107 ecm.?/gm. sec®. Taking p= 755 gm./cu.?, the
limiting value

(I)

u)Tr
i 02247 gives = =2} hours.
mfp ®

2

-
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The shortest period, therefore, in which a homogeneous fluid having
the same mean density as the earth can rotate uniformly in the
form of a spheroid is 24 hours.

For the p and w appertaining to the earth, two spheroidal forms
are possible. The larger spheroid has rather a big ellipticity and
is of no interest from our point of view. The ellipticity of the
other spheroid is given by

Modern observations show the ellipticity of earth to be in the
neighbourhood of z57. The large difference is due to the fact that
the earth is not a homogeneous fluid mass.

It is of interest also to mention the results obtained regarding
the equilibrium of a fluid in the form of a triaxial ellipsoid. Jacobi¥*
proved that an ellipsoid with three axes, the smallest of which
coincides with the axis of rotation, is a possible form of equilibrium,
subject to a certain limitation of the ellipticities. If €, 7 denote the
meridional and equatorial ellipticities of a Jacobian ellipsoid, then
e=4 N, =13 \"? where either A or A’ >1. In the case of the earth,
we have roughly e=53+, 7=0 (¢*). A homogeneous triaxial ellip-
soid having the same ellipticities as the earth is therefore not a
possible form of equilibrium. For further information on Jacobian
ellipsoid, reference may be made to Darwin’s  work.

The above considerations are of a theoretical nature in that
they apply to a homogeneous rotating fluid. The earth, we know,
is definitely non-homogeneous. The next step forward is due to
Clairaut] who published his book on the figure of the earth about
half a century after the third book of Newton’s Principia. We will
now give an account of his theory, and its extension by Darwin
and de Sitter.

2. Clairaut’s theory.—Iun Clairaut’s theory, the earth is
assumed to be heterogeneous, but such that it is built hydrostat-
ically. This implies that the surfaces of equal density are
equipotentials.  Strictly speaking, therefore, the theory is only
applicable below the depth of compensation. It gives the elliptic-
ities of surfaces of equal deunsity inside the earth, as well as the
ellipticity of the geoid which is the boundary surface, provided the
law of variation of density with depth is known. The following is
a hrief proof of the well-known Clairaut’s differential equation.

Since the earth is in hydrostatic equilibrium, there is no
shearing stress inside. Tt can be seen easily § that such an earth
can differ from a sphere by only a second order harmonie. The level
surfaces are therefore of the foom»r=k(1+7,).

* Clarke, Geodesy, 78,

+ Darwin, Scientific Papers, 3, 1910, 119.

T Clairaut, Théorie de 1 figure de la T'erre, 1743,
§ Pratt, The Figure of the Earth, 1865, 78,
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The potential of a heterogeneous body r==k (1+XT,) at an
internal point * (%, 6’,¢') is

h /g n ’ /5 ’
Gty [y & (R BT Yy
v r

o OF 25 3

4 08 (B, iy 3 oo ,

4 LN By 7y 2RY ., :
+37rlep o {2 R 4 20 + }dl»,

where k is the mean radius of the outermost surface, and k, is the
mean radius of the stratum of equal density through the point in
question. p’ denotes the value of density at the level k', and the Y"s
are the same functions of 6’ and ¢’ asthe Y’sare of # and ¢. Taking
the equation of our stratum to be »r=% (1—%¢, P,) and the density
at this level to be p, the condition that U; is constant on it gives the
equation

_ & (M e 1 j’ r A ey a4 B [’“ ; de
kl jopk dﬂ + 5k13 0 P (lk, ( ¢ )(’ + 5 _l..lp dk/(j
— 1 27, 2 o]
@. kl ..(3 U)

¢’ denotes the ellipticity of the level surface having the mean
radius k. In the derivation of the above equation, quantities of
0 (€*) have been neglected. Differentiating this twice with vespect
to I, and simplifying, we have
d*e, | 6pk? de ( 1 pk® '\ 6e (o
—({ 1-— —'=0 e 4304
dk,? ts (ky) dk, S(k) k2 7 (3:4)

4
where S (%, )=3 jo p'k*dk', and k| is the mean radius of the level

surface whose ellipticity is e,.

This differential equation can also be obtained by utilising
the condition that the gravity vector at any point of a level surface
is along the normal.

The exact manner of distribution of density inside the crust is
not known, but assuming that it increases as we go towards the
centre of the earth, it can be seent from equation (3-4) thate
decreases as we go downwards. In other words the level surfaces
hecome more and more spherical as we approach the centre.

To make equation (3-4) integrable, several transformations
have been used. We will mention only the elegant transformation
of Radau} (1885), which gives some very important results. He
introduces a variable 7 § defined by

T e dky (35
and obtains
¢ _ 2 2 o
Al S R RvarT) (5:6)

* Routh, Analytical Staties, vol. 11, § 297.
t Jeffreys, The Earth, 1929, 211.

1 Comptes Rendus, 100, 1885, 972-77.

§ This 7 should not be confused with the equatorial ellipticity of the geoid.
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where M, C are the mass and moment of inertia (about the axis of
rotation ) respectively of the matter enclosed by the surface. If the

density distribution inside the level surface is known, ]l%? can bhe

computed and from it 7 obtained by equatfon (3:6). Knowingn,
we can get €, at any depth by integrating the differential equation
(3:5), viz.

de, _ dk,

o TR

Assuming the ellipticity of the outside surface to be 0:337 x 10-2,
and inferring the density distribution by a trial and error method
from a study of near earthquakes and the surfaces of discontinuity,
Bullen* gets the following table for €, at various depths d.

d p € x 10° 1
€
km.

0 0-337 | 2967
100 338 0-334 | 299-4
400 4-08 0-325 | 3077

1000 452 0:308 | 324-7

2000 502 0-278 | 359-7

2900 3:3;}'§ 0-260 384-6

4000 | 11-21 i 258 387+ 6

5000 1193 | 257 380+ 1

6370 12-26 ] 256 390-6
|

For the geoid the ellipticity € can be obtained from a knowledge

J —

of the precessional constant

by means of the equation

(’
1
O_A e_’_‘z‘m//
= 2 — (3-0)
l_g\/l'f"’?
r 174 213
where 9 = 3) T _9 and wm” = ﬁr}'.—, (3-8)
3 e M

* M. N.R. A, S, Geoph. Suppl, 3, 1936, 395-401,
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In the derivation of Clairaut’s equation, terms of 0 (€*) were
neglected. Darwin* and de Sittert have extended Clairaut’s theory to
terms of second order. Their method is identical with that of Helmenrt,
already described in chap. 1, para 6. The external potential of a body
symmetrical with respect to its axis of rotation may be written as

_fM K o oo W
U—T% 27Ar_,(l 3 sin*d) + szcos(?
D 6 .., 3
+ T—4<s1n40— 7 sin®d + 35> } v (349)

where K and D are two constants characteristic of the body, as we
have already seen. This equation holds irrespective of the internal
constitution of the body. If the body is an equipotential surface,
its equation will be

7-=a|:1—e sin‘ze—(ge’l—%x)sin‘J 29], oo (3-10)
Gravity on this surface is

g= G, (1+8 sin* § + v sin® 26), eeo (311

where (¥, is given by equation (1-41),
5 17 2 o 1o
and B = 5 M—E= J7 M= =X, . (3-12)

r- 9

v o= _é63+1§56m+%x. ee. (3-13)

The constants K and D occurring in the expression (3:9) for the
potential can also be expressed in terms of € and m as

3K _ 1 3 5 1 5.1 1 o,

2a9—€—§m+&m —§e+~7€m—§X, e (3-14)
D _7 5 0. 1x
(—L_l. = EGQ ja— §€m—x. e ( ]))

In chapter 11, the values of B, v deduced by least squares from
the available gravity data were used for determining e. Equation
(3-14) affords a more accurate method of determining the ellipticity.
The constants K and x occwrring in it are obtained from the

following considerations: .
3K 3C—A ,
= = 316
2 = 2 e 1 (), e (3016)
C—4
here =
where G
and q= 3 0 .
2 Ma?

% Darwin, Scientific Papers, 3, 1910, 78-118.
+ De Sitter. Proc. of the R. Acad. of Se. at Amsterdam, 17, 1915, 1295,
" Bull, of the Astron, Inst. of the Netherlands 50, 1924, and 129, 1927
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H is known by observations. Taking the ratio of the mass of the

moon to that of the earth as 1_ 81:50+0-07+ —Al;, de Sitter*

7
obtains the expression for H from the Constant of Precession to be
H = 0-0032774 + 0-0000270 Ai#.
¢ can only be obtained by making some sort of aésumption
about the internal constitution of the body. On the hydrostatic

hypothesis, de Sitter found

g = 0:50075 + 0-00008.
He proved that this value will change by an insignificant amount
if the earth were isostatic, or even non-isostatic.

It now remains to assign some value to the second order term
X in equation (3:14). Assuming Roche’s law of deunsity viz.,
Py =P [ 1—k% i)] where p, is the mean density of all matter

ay

lying inside surface a, Darwint obtained y = — 204 x 1078, By
Wiechert’s hypothesis, which assumes the earth to consist of a
nucleus of radius roughly % of that of the earth and density 8-206,
and a top layer of density 3-2, he got ¥ = — 168 x 1078, The
maximum change in the radius vector of the level surface due to
these widely different laws of density is about § metre. The effect
on the ellipticity would be negligible.

Taking x = — 204 x107% and wm = 0-003467753, de Sitter
obtained

L —296-92 + 0-136.
€
In a later paper{ he revised his value of H to 0-0032770 and
deduced
% = 29696 4 0-10.
He claimed this value of € to be much more trustworthy than any
derived from geodetic operations or from the motion of the moon.
2Ko = ¢H, de Sitter takes the value of
o

H as given by the astronomical observations for precession, and
derives ¢ from the assumption of a hydrostatic earth. He assesses
the inaccuracy of ¢ due to this assumption which does not cor-

(2]

In the computation of
L}

respond with facts. Jeftreysy gives a method for determining =°
o’

-

which is free from the above objection. His method consists in
ohserving the sidereal motions of the moon’s node and perigee, and
the inclination of the moon’s axis. The first two depend ou threc

* Bull, of the Astron. Inst. of the Netherlands, 53, 1924,
t Darwin, Scientific papers, 3, 1910, 97,

1‘: Ibid, 4, 1927, 57-61.

§ M.N.R.A.S, Geoph. Suppl. 4, 1937, 1-13.
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3K ,
constants ——, J' and K', where

2a®’
SK_3 20—A—B%
2a® 2 Mao*
CRN S T :
, 8 B =4
K= e

The accented letters in these expressions refer to the moon. The
inclination of the moon’s axis depends on J' and K'. Observations

) 3K
of the above three motions enable us to solve for VL J'and K,

Jeffreys obtains

;’f; = 16,453 x 10~7 + 65 x 107, (5418
which corresponds to
%:296-38i0-51 e (3019)

and is regarded as the best determination of € at the present time.

Also according to Jeffreys

q =0-5017 + 0-0018
and according to de Sitter

q = 0:5007 + 0-00008

Jeffreys’ g-formula corresponding to e as given by (3:19) is
%=97s-051{1 + (5282 + 6) x 10~° gin® d— 7 x 10— sin22¢},
and de Sitter’s formula is

% =978-052{1 + (52884 + 11) x 1077 sin® ¢ — 75 x 10~7 sin® 2¢}.

3. Summary.—A static homogeneous oblate spheroid and
an ellipsoid with unequal axes cannot be level surfaces of their
own attraction. A homogeneous rotating fluid in the form of a
triaxial ellipsoid having the same axes and rotational velocity as
the earth cannot also be a surface of equilibrium. An oblate
spheroid is however a possible form of equiljbrium of such a fluid,
the ellipticity depending on the density and the rotational velocity.
The ellipticity of the earth deduced on the basis of a homogeneous
rotating fluid is about 20 % greater than that indicated by other
considerations.

If the oblate spheroid is heterogeneous and is a surface of
equilibrium, its external field can be determined as in chap. 1,
para 6 without a knowledge of the internal mass distribution.
Conversely the ellipticity of such a spheroid can be determined
from gravity formule deduced by least squares. Alternatively,
€ can be derived by Clairaut’s, Darwin’s and de Sitter’s theory.
Clairaut’s method utilises the expression for the internal potential,
and is applicable to a hydrostatic level surface. It only takes
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into account terms of the first order in ellipticity, and its application
to the actual earth is limited to depths below 40 km. or so. Darwin
and de Sitter have developed Clairaut’s theory to terms of order €
starting from an expression for the external potential without
making any assumption about the internal density distribution. In
determining the ellipticity they had to compute a constant ou the
assumption of hydrostatic stress in the interior. This assumption
does not accord with facts. Jeffreys has got over this difficulty by
inferring this constant from the moon’s motion without reference
to any hypothesis about the internal state of the earth.



CHAHTER IV

GRAVITY ANOMALIES AS A MEASURE OF SUB-
TERRANEAN INEQUALITIES OF DENSITY

1. Compensation.—It is now an accepted fact that the
larger features of visible topography are compensated in some form
or other. In 1854, Pratt published a paper in the Philosophical
Transactions of the Royal Society, in which he calculated the plumb-
line deflections due to the Himalayas at three stations (Kaliana,
Kalianpur and Damargida) of the Great Avrc series of India. He
found these deflections to be greater in amount than their observed
values., This led him to formulate his theory * of compensation,
namely that the irregularities of mountain surfaces have arisen
from the vertical expansion of the earth’s crust from depths below.
In this way the surface features get underlain by masses of
deficient density.

Hayford T in 1912 gave a practical shape to Pratt’s theory of
compensation and ‘published tables, by which the effect of topogra-
phy and compensation on the value of gravity at a station could be
computed. He assumed that the total mass in every unit vertical
column ( whether under the oceans or the continents) down toa
certain surface called the surface of compensation, is the same.
Each column is supposed to be in independent equilibrium. The
Hayfordian hypothesis cannot, however, be mechanically true, as it
assumes point to point compensation, which implies that the earth’s
crust offers no resistance to deformation. Geologists have always
regarded it as a mathematical abstraction, but we shall see later that
it can give very useful results.

Airyl propounded a hypothesis in 1855 that mountains and
plateaux have roots below them penetrating into the denser substra-
tum, the whole block floating in hydrostatic equilibrium. This
hypothesis accords approximately with modern conceptions of the
constitution of the earth and has found more favour than Hayford’s.
Heiskanen § has brought out tables for this hypothesis of compensa-
tion. He assumes the thickness of the crust corresponding to zero
elevation of a region to be 40, 60, 80 and 100km., and the difference
of density between the crust and the magma in which it is floating
to be 0:6 gm./cm.?.

It is universally agreed now that the compensation cannot be
local in nature and that some form of regional compensation
should be made the basis from which gravity anomalies should be

* Phil. Trang, of the Royal Soc. of London, 1859, 745. i

t+Hayford and Bowie. The Effect of Topography and Isostatic Compensatioll
upon the Intensity of Gravity, 1912,

1 Phil. Trans. of the Royal Soc, of London. 145, 1855,

§ Bull. Geod. 1931, p. 110,
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reckoned. V. Meinesz has produced tables based on the idea that
for each topographic feature dm there is a corresponding compensa-
tion at a depth of 30km. extending laterally to radius R. His tables
take into account values of R ranging from O to 232:-40km. As
another variety of regional compensation of topographic inequalities,
V. Meinesz*, assuming the earth’s crust to behave like an infinite
elastic plate of constant thickness 25km. floating over a magma,
whose density is greater than that of the crust by 0:63, has
produced tables for the following cases:—

(7) Crust is of constant density, and compensation is concen-
trated at the junction of the crust with the magma.

(+7) Compensation is uniformly distributed throughout the
25 km. depth.

Seismological evidence shows that the normal structure of the
earth’s crust is by no means homogeneous, but consists of three
layers possessing different physical properties. The interfaces of
these layers, according to Jeffreyst, are about 10km. and 30km.
helow sea-level, the discontinuity of densities at these layers being
about 0-2 and 0-5 gm./em.? respectively. Modern theories assume
that compensation is confined to the interfaces of these layers. In
view of this, not much interest attaches to the controversy which
raged at one time as to whether Hayford’s or Airy’s hypothesis
accorded better with the observed gravity anomalies,

In the early days, all discussions on gravity were based on
Hayford anomalies, since tablesi on his hypothesis only were avail-
able. These tables hold only for perfect compensation, the depth
of compensation being assumed to be 113-7 km. and the mass of
compensation being taken to be equal to the corresponding topo-
oraphy. More general tables have now been brought out in Italy §,
which can be used both for Pratts’ and Airy’s types of compensation
for any reasonable depth of compensation and thickness of the crust.
Also, great strides have since been made in producing tables on
other hypotheses, and the Isostatic Institute of the International
Union of Geodesy at Helsinki has computed the anomalies on as
many as twenty-one different hypotheses and in its publication No 5,
1939, results have been published for 8758 gravity stations. More
work is, however, needed in this direction, as there are some useful
reductions for which no tables have been worked out; for example
the inversion reduction, which possesses the property, that it gets
rid of the protruding masses above the geoid in such a way that the
natural geoid continues to remain the level surface of the new mass
distribution.

*Bull. Geod. 1931, No. 29.
. YJeffreys. “The Earth”, chap. vi. A more recent discussion on this subject is
given in M. N. R. A, 8. Geoph. Suppl. 4, 1937, 210.
1 Hayford and Bowie. The Effect of Topography and Isostatic Compensation
upHn the Intensity of Gravity, 1912.
§ Cassinis, Dore, and Ballarin ; Tavole foundamentali per la riduzione dei valori
osservati della gravitia. Pavia, R. Commissione geodetica italiana, nuova serie, No, 13,

27,1937,
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2. Gravity and geology.—It has been found that no matter
what theory of compensation is adopted as a working hypothesis,
there are certain regions where considerable gravity anomalies per-
sist. Animportant use of the gravity anomalies is that they give a clue
to these disturbed areas. As examples of such areas may be men-
tioned Peninsular India, Ferghana Basin, Japan, Dutch East Indies,
the Caucasus, Carribean Sea, the great ocean deeps, the oceanic
islands and the African Rift Valleys.

It will not be out of place to give a brief account showing how
the gravity anomalies have helped to elucidate the geological history
of these regions, and have thrown light on the folding lines of the
crust. It might be added that the shape of the geoid deduced from
plumb-line deflections can give a valuable confirmation of the
results deduced from gravity anomalies. These deflections are
integrated along the meridians and parallels, and the separation of
the geoid from its reference spheroid is determined. If we do the
same with Hayford residuals, we get the compensated geoid which
is a level surface of the anomalies from Hayford’s hypothesis. The
undulations of these geoids yield very valuable information about
the nature of compensation in an area.

The Hidden Range.—In India, from a discussion of the plumb-
line deflections, Burrard * came to the conclusion as early as in 1901
that there were important sub-crustal features which greatly modified
the effect of the Himalayas. He postulated the existence of a sub-
terranean chain of rocks in Central India, running east and west,
which caused the plumb-line deflections on either side of this area to
be in opposite directions. This “Hidden Range” has been clearly
brought out by modern work based on the deflections of plumb-line
and gravity. Charts x and x1, Survey of India Geodetic Report
1938, show the gravity anomalies in India with respect to the
Helmert and International spheroids respectively. In Chart x.
there is a wide belt of positive gravity anomalies running right
across India from the Bay of Bengal to Karachi. Chart x1 shows
the same feature but not to such a marked degree. This is due to the
fact that the International formula makes India a region of pre-
domlnantly negative gravity anomalies. Bullard found the same
thing in East Afnca, and it is possible that this formula, while
good enough for discussing anomalies of the earth as a whole, is
not suitable for apphcatlon to limited areas.

Tt is obvious from Chart x, that gravity observations in the Bay
of Bengal and Arabian Sea are necessary to delineate the extension
of the Hidden Range. Another reason why a knowledge of Ag’s
in these regions would be welcome is that the geoid in India as
deduced from plumb-line deflections shows a dlﬂ’elence of about
150 feet at two pomts on the same parallel of latitude 12°at
longitudes 80° and 98°. A corroboration of this extraordinary rise
with the help of gravity data would be very interesting.

# Burvey of India,Professional Paper No,_5,
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A feature of the Hidden Range is that it is flanked on both its
north and south sides by areas of defective gravity. To the north,
the Indo-Gangetic plain between Agra and Jalpaiguri is a region
of low gravity anomalies. This area is filled with light alluvium
having a density of about 22 gm./em?. and at first sight it appears
as if this must be the cause of the negative anomalies. A little
computation shows, however, that the thickness of sediments requir-
ed to produce this effect would have to be enormous¥. Various
theories have been advanced about the origin of this Gangetic
trough. It was once thought that it is a V-shaped riftt about ten
miles deep, produced by the opening of the crust under tension.
This theory has not received general acceptance. Geologists now
believe that the Himalayas and the Gangetic trough have both
arisen from the waves of tectonic folding from the north. These
waves created in front of the rising mountain a depression of the
nature of a ‘fore-deep’.

Gtlennie] has put forward the crustal warp theory to explain
the tectonic features of India. According to this, gravity anomalies
are due to deviations from the normal arrangement of the three
layers comprising the earth’s crust. Fig. 1 shows a downwarp.
When the intermediate layer is pressed into the dunite, the latter
being plastic is raised up at the edges. Negative gravity anomalies
indicate a downwarp, and positive ones an upwaryp.

Glennie has suggested that under the Gangetic Plain is the
southern margin of the great geosyncline which formed the basin of
the Tethys. The formation of this geosyncline involved a deep-
seated down-warping of the earth’s crust, and the Hidden Range
marks the line along which the balancing uprise took place.

Dutch Fast Indies.—Gravimetric observations of this region
were made by V. Meinesz§ in 1928 and 1932. He found a narrow
strip of strong negative anomalies differing by about 200 mgals
from the neighbouring positive anomalies. As in the case of the
Hidden Range this negative belt has no direct connection with
topography, as it passes sometimes over submarine islands and
sometimes over deeps. It runs parallel to the west coast of Sumatra
and has been delineated up to the parallel of 5°.  Observations are
needed in the Bay of Bengal to show whether this joins up with
the defective area to the north of Madras, or with the negative
strip near Diamond Island and Bassein.

It is a remarkable feature that this negative strip goes by the
side of the Mindanao trough and not directly over it, although this
trough has depths of over 8000 metres. The same characteristic is
observed in the Nares deep in the Atlantic. Here also the axis of
the ridge of negative anomalies is not exactly above the deep, but is

. _*A parallel case is that of the African rift valleys discussed by Bullard in the
Phil. Trans. of the Royal Soe. of London, 10th Aug. 1936, Here again the Ag's are
negative, but are not solely duc to the light sediments at the top.

tSurvey of India, Professional Paper No. 17, p. 15.
ISwrvey of India, Professional Paper No. 27, 1932,
§Gravity Expeditions at Sea, 3, 1923-32,
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shifted unexpectedly towards a neighbouring island ridge. The
above are indications of some phenomena going on inside the earth’s
crust.

V. Meinesz* offers a physical explanation of these strong
negative anomalies by his so-called buckling hypothesis. He con-
siders these areas to be regions of mountain formation. What is
happening is, that the land at A and B in Fig. 2 is subjected to
compressive forces which produce an upwarp C. Due to the enormous
compressive forces the crust gets crushed, and like a floating iceberg
has a much greater hump D down in the magma than above sea-
level. This sub-crustal hump of lichter material is responsible for
the negative anomaly.

The buckling hypothesis thus postulates that the folding of
the crust forces licht matter into the magma, and in regions which
are tectonically active this would give rise to anomalies. This
hypothesis is not very different from the crustal warp hypothesis.
V. Meineszt has supplemented the above hypothesis by postulating
the existence of forces exerted on the crust by the magma, due to
dynamical processes in this sub-crustal layer. The horizontal
gradient of temperature at the lower boundary of the crust sets up
convection currents, and he finds theeffectof these with the help of
equations of motion for viscous fluids.

The Atlantic Ocean.—V. Meinesz found the anomalies over a
great part of the Atlantic Ocean to be positive. Their mean values
by Hayford’s, Heiskanen’s, and V. Meinesz’s hypotheses are + 36,
+32 and + 28 mgals respectively. The existence of this positive
anomaly over such a wide region is yet to be explained and will
throw much light on the problem of oceanic structure. V. Meinesz
has offered some tentative explanations and has discussed the
relations of the gravity anomalies with the mid-Atlantic ridge.
Such a mid-oceanic ridge is also postulated with a fair degree of
certainty by the oceanographers in the Indian Ocean. The process
of the formation of such ridges is yet an unsolved problem.

Tt is to be remarked that conditions in the Atlantic are not similar
to those in Netherland Bast Indies, there being no strip of negative
anomalies. V. Meinesz concludes from this that this region is not
tectonically active.

Ferghana Basin.—The Pamir region in middle Asia is of great
interest, and has been specially chosen by the Isostatic Institute of
the International Association for further study. The free-air gravity
anomalies at some of the stations in this area are of the order of
—150 mgals. Both the Bouguer and free-air anomalies in this
extensive region, covering an area of (5°x4°) 7.e. about 70,000
square miles are generally negative, and they become greatest in
the Ferghana basin. Erola i has worked out isostatic anomalies

* Gravity Expeditions at Sea, 2, 1923-32, 118.
t Ibid, 54.

1 Publications of the Isostatic Institute of the International Association of
Geodesy No. 4, Helsinki, 1938,
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for this region on ten different hypotheses. In each case he has
correlated Ag with the height of the station, first by omitting
stations of the Ferghana Valley and secondly by taking all the
stations. Using the criterion that that hypothesis corresponds best
to the actual structure of the earth’s crust, which gives nearly a zero
coeficient of the height term, he gets the thickness of the crust
to be 35 km. when all stations are taken into account, and 22 km.
when stations of the Ferghana valley are omitted.

D. Muschketov* has suggested that the negative gravity
anomalies in Ferghana Valley point to a recent rising of the whole
region. These negative anomalies from India to Kasakstan confirm
the opinion of the geologists that the mountain system of Pamir-
Alay has a large recent epirogenetic rising.

African Rift Valleys.—Several theories have been advanced by
geologists about the origin and history of the African Rift Valleys.
To distinguish between the various hypotheses, Bullardt in 1933
carried out a gravity survey in East Africa. He worked out the
anomalies on seven different hypotheses, and inferred from them
that the African plateau is on the whole in isostatic equilibrium, but
that the Rift Valleys are underlain by matter of deficient density.
He came to the conclusion that Gregory’s theory, that Rifts are
caused by tension in the crust followed by fracture, is not true and
developed Wayland’s suggestion that the Rift is formed by folding
and faulting under compression. The light surface matter gets
thrust into the magma when the block between the fractures is
forced down.

Later in 1934, Horsfieldi took observations at some more
stations in the Tanganyika Territory and found the same close
association between the Rift Valleys and the negative gravity
anomalies.

The Red Sea had been always regarded as a part of the system
of Rift Valleys. V. Meinesz’s observations, however, showed gravity
to be in excess in this region. Observations on land on both
sides have shown that the isostatic anomalies are positive over the
Red Sea and its coasts, but these anomalies do not extend much
inland. The gravity anomalies thus do not lend support to the
view that the Red Sea is a part of the African Rifts. It is under-
lain by heavy masses, and may not even have been formed at the
same time.

Over-compensation in  mountarnous regions.—A question of
some interest is whether there are any mountainous regions of the
globe which are over-compensated to such an extent that the
geoid is depressed there. With the data available so far the
answer to this seems to be in the negative, although there are some
mountain stations at which the Hayford anomaly is negative,
Indicating over-compensation. For instance, to the north of

* Angew. Geoph. vol. v, 1936,
t Phil. Trans. of the Royal Soc. of London, 10th Aug. 1936,
1 M. N.R. A .S,, Geoph. Suppl,, Jan, 1937, 94.
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Kashmir, the Hayford gravity anomaly at Depsang is — 64 mgals,
and at Yarkand —67 mgals. This question has been discussed
by the author¥, who considered the data in several mountainous
regions of the globe and inferred that if the geoidal elevations are
taken with respect to the spheroid fitting best the area in question,
the geoid follows the topography. Amnother confirmation of the
above result is afforded by gravity measurements in Cyprus by
Macet. Observed gravity is found to be much in excess of what
can be expected from topography. Correction for topography and
compensation increases the discrepancy between observed and normal
gravity. The mountains of Cyprus far from being over-compensated
have a great mass of heavy rock beneath them.

The thickness of the earth’s crust.—Gravity anomalies can give
an indication of 7', the thickness of the earth’s crust. Heiskaneni
has computed the anomalies on several hypotheses and has utilized
the criterion that the value of T' which gives the least values of the
anomalies is the best. He concluded that the thickness of the crust
corresponding to zero elevation of the ground is 30 km. in West
Alps and Norway, and 40 to 50 km. in U.S.A. Taking into account
the actual mean height of topography, the values of T work out to
about 40 km. in West Alps and Norway, and 50 to 60 km. in U.8.A.
Bullard § has estimated the thickness of the crust in East Africa,
and Erola|| in the neighbourhood of Ferghana basin in middle Asia.
In the latter region the thickness of the earth’s crust corresponding to
zero elevation of the topography appears to be 25 km., and under the
neighbouring mountains which are about 3,000 metres high, it is
about 40 km. These results are in accord with the evidence afforded
by the study of earthquakes, and have led to the gradual crumbl-
ing away of the earlier belief that the thickness of the crust is of
the order of 1,000 miles. Care, however, is needed in defining the
meaning of the earth’s crust. Modern theories about the constitution
of the earth imply that the crust consists of upper layers floating on
a4 denser substratum which is supposed to be in hydrostatic equili-
brium. The thickness of the upper layersis taken to be about
40 km. It might be mentioned, however, that the concept that
there js no stress difference below this depth is not rigidly correct.
The evidence of gravity anomalies and of deep-focus earthquakes
shows that the lower layer is not completely devoid of strength.

3. Definition of gravity anomaly.—Strictly speaking 2
gravity anomaly should be the difference between observed and
theoretical gravity, both being referred to the same surface. Such
an anomaly will depend on the normal gravity formula used and on
the difference between the actual and assumed mass distributions.
[n actual practice, however, observed gravity ¢ on the earth is reduced

I Heiskanen, Publications of the Finish (teodetic Institute No. 4, 1924

§ Bullard, Phil. Trang. of Royal Soc. of London, Ang. 1936, 445-531.

i Erola, Publications of Isostatic Institute of International Union of Geudesy,
No, 4, 1938,
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swface. The anomaly g—v, is therefore not a true gravity anomaly.
It is a conventional anomaly, and is partly due to the difference in
elevation between the geoid and its reference surface, and partly to
the intervening masses between the two surfaces and to the different
mass distribution inside the two surfaces. As an example, consider
the usual Hayford’s gravity anomaly (g.—%,). The observed value
of gravity on the earth is reduced to the natural geoid, this being the
surface to which the elevations on the ground are referred. Data
is generally not available to reduce observed gravity to the level
of the reference surface. Since ¢, refers to the geoid we see
that the usual isostatic anomaly (¢.—v,) is not a true gravity
anomaly. With the help of tables* giving the separation u between
the natural and isostatic geoids, we can obtain the reduced value
g; on the compensated geoid. (9. —v,) contours are drawn and
are generally used to indicate areas of mass excess or defects. 1If,
however, the separation N between the compensated geoid and its
reference spheroid can amount to + 1,000 metres, as some geodesists
affirm t, these anomalies will be useless for such a discussion. Even
if ¢, be corrected for this N by free-air reduction by the addition of

a term M, the position will not he quite satisfactory, as there would
a

still be considerable masses intervening between the geoid and its
reference spheroid whose direct effect must be taken into account.
The free-air term has been a subject of much controversy as it has
been claimed by some that it is responsible for the major part of
the gravity anomaly.

A point worth remembering is, that this height correction when
applied to the conventional anomaly has a tendeney to increase the
anomaly algebraically. Experience shows that generally regions of
positive gravity values are associated with an elevated geoid, and of
negative gravity anomalies with a depressed geoid. (¢.—v,) and
%\T have therefore the same sign on the whole, and one cannot

explain away the conventional anomaly by this so-called indirect
effect.

4. Direct and indirect effects.-—A mathematical expres-
sion for the conventional anomaly] can be obtained in the following
way i—

Consider a reference spheroid, gravity v, on which is known.
Suppose we put on it a coating of surface density o, whose potential
at an external point is S. Let gravity on the level surface, which
has the same potential as the reference surface, be ¢ Our problem
1s to find an expression for the anomaly (g—v,).

*U.S. Department of Commeree. Const and Geodetie Survey, Sp. Publication
No. 199, 1936.

t Ackerl, Zeit. f. Geophys, 9, 1933, Ledersteger, Zeit f. Geophys. 10, (1931),
p- 246, The general opinion now ix that the sepavation between the two surfaces
can amount at the most to 300 feet.

1 Helinert, Hoheren Geodiisic, 1L p. 259,
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If W is the external potential due to the spheroid and coating,
and U the potential due to the spheroid, we have

w=U+S8.
Gravity at a point G on the level surface ( Fig. 3) is

=]
= - (5_W>
! n /g,

and at the corresponding point P on the spheroid is

U,

The conventional gravity anomaly is

1===(5), (%),
<[], +(8), (),
=[50, (), -+ (), 3+ ()
= [(3), (%), ]

We make the approximation now, that

(50 s = (o) s =
on geoid on spheroid &’

where &r denotes differentiation along the radius vector.

To see the justification for this, suppose the equations of the
geoid and its reference spheroid are

r,=al[l —efi (6¥) — ef, (6,¥)] o (401)
and rs=all—efi(6¥)], e (4-2)
where 8, ¥ denote the angular co-ordinates of a point. Experience
shows that the geoid and its reference spheroid can differ by 200
or 300 feet and not very much more. Hence ae, can at the most
Grfiﬁf =0 (€ ), € being of O (¢€).
The angle 1 between the radius vector and the normal at a point of
the surface (4-1) is

amount to 300 feet, i.e. €, =

1

{ 8in®d (e fio + & fuo )*+ (e, fiw + & Sy )? }2
sinf [1 +ef) +ef] ,
where the suffixes 6, ¥ denote differentiations with respect to 6 and

¥ respectively. The angle x between the normals of the geoid
and spheroid is of O (¢ ¢,). The error made in taking

(-
on geoid "\ n spheroid

ibﬁ( ! _COSX) =0 (G'2 €’ o5 =0 & o8 , which is negligible.
on s 5

tan p=p =
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The error involved in assuming

(_SE) = (E‘i) is of order SLS ur=0 (eﬂﬁ),
on spheroid on sphere on ' n

which again is negligible.
Also to an accuracy of O ( ¢¢*), we can take
N 8_%) = — M.

on a

g_%=_(§+2§) o (408)
r (.
where » denotes the radius vector of a sphere of radius a.

To the above order of approximation, therefore, the difference
between the values of gravity on the geoid and its reference
surface can be deduced by assuming the coating to be on a sphere.
The external and internal potentials due to this coating of skin
density o =p = H, on a sphere of radius a are

1 ntl
Sg = 4 wfap 2 < u ) Hm

We finally get

In+1\ r (4-4)
1 -\
S,- =4 wfap E 2n—+1 _a‘ Hn'
Obviously, for »=a we have
88, 8. _ —
5, + O —2nfp 2 H,= — 2nfo
Substituting in equation (43 ) we have
28 | S
g =% =("7‘ + ﬂ"’ 27Tf‘7)_=u’
= (—%44—277_;"0')'.:& vee (4"5)

= + 48,9+ 8y,

where A g is the direct effect of the coating and A,g is the indirect
effect due to the difference in level between the two surfaces.
Equation (4-5) can also be expressed as an integral equation in
¢, Viz.

2’7Tfo'-—§— 7% =Ag, the integration being on a sphere of

al r

radius «. Idelson* has indicated a method of solving this with the
help of spherical harmonic functions.

The value of the potential on the geoid and its level surface

being the same, we have
S =Ny

3 ja’dw

A= 2mfo + —12\1"
v “ ... (4-6)
Ay %ﬁ;_.‘_)

~* Gerl, Beit. 40, 1933, 24,
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A,g denotes the attraction of the coating, and is made up of two
parts; 27fo= 3(11; is the attraction of the near portions and

;V—Z is the effect of remote portions. D is defined by the relation

o =pD, where p is the normal density of the earth’s crust.

If the coating c=p 2 H,=pD is homogencous, i.c. if D is constant,
the near and remote portions exert equal effects, and we have

=32D. The mass of the coating is m =4ma’s =4mwa* Dp=35m «* Np.
If H, is zero, the coating becomes massless, and the effect of its
remote portions may be considered to be negligible. The indirect
effect can also be neglected, provided the separation N between the
two surfaces is much less than D. In this case, we obtain the very

. .o Ag .
convenient result that the coating is —-2—J-, and a good estimate of
m

the anomalous masses can be obtained from the gravity anomalies
by the use of the simple infinite formula. This would not of course
hold for an extensive area, in which N varies within wide limits.
At first sight, we have obtained here an apparent contradiction
with Green’s equivalent stratum, which says that matter M, inside

. A
an equipotential surface can be veplaced by a skin density o :Z‘,‘({
on the surface. The explanation of the discrepancy lies in the fact

that the mass of Green’s coating % is not zero but M,. The cffect

of near portions is therefore comparable with that of remote ones.
We have taken a massless coating, the effect of remote portions of
which is negligible. The near portions only are responsible for
producing Ag and we can use the infinite plane formula.

The case usually met with is that a series of gravity observa-
tions are carried out over a limited area, and from them the masses
causing the gravity anomalies are inferred. For solving such
problems, it is of great importance to know the disturbance of
oravity due to standard forms of anomalous masses. The indirect
effect is of secondary importance.

For a study of the mass distribution in an extensive region
the indirect effect has to be taken into account. Convenient tables
are now available* from which this can be easily obtained. With
the help of these tables, the Isostatic Tnstitute of the International
Geodetic Association has calculatedt the indirvect effect of the
Hayford zones 1 to 7 at different places on the earth.

5. Subterranean mass anomalies.—TFor an arca covered
with a sufficiently dense network of gravity stations, one can
deduce valuable information about the inequalities of mass (as

% Tables for determining the form of‘rho gon}él. and its indirect effeet on
gravity. U. 8. C. & (4. 8., Special publication No. 199.
1 Bull. Geod, 80, 1938, 409,
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reckoned from an assumed standard distribution) and about the
nature of equilibrium from the gravity anomalies. It must however
be borne in mind that this problem has no unique solution. So
far as the gravitational effects are concerned, any mass can be
replaced by an infinity of different mass distributions having
the same total mass. The following examples will illustrate this.

A homogeneous sphere, and a point mass at its centre have
equivalent effects. Confocal ellipsoids with equal masses have the
same external field. The internal masses of an equipotential

. A
surface * can be replaced by a skin density T:, so far as external

eravitational effects are concerned. The corresponding theorem
for the case when the boundary of the attracting masses is not an
equipotential, is that the equipotential of the internal masses is

equivalent to that of a skin density %T/ combined with a distribu-

tion of doublets of intensity — 21% per unit area with their axes

directed normally, U being the internal potential of the masses.

Again from analogy with a well-known electrostatic problem it
can be easily shown that the effect of a mass m at C" at depth =z
below the earth, ( Fig. 4) assumed to De a sphere of radius k, is

m w—4k—@2}
on

b

equivalent to a coating of surface density o=

a sphere of radius b ; » denotes the distance from the point €', and
radius b has to be less than & From this we infer that a local
compensation at depth z can Dbe replaced by a regional compenga-
tion at a smaller depth and thus gravity data alone will not suffice
to distinguish between these two distributions.

An exteusiont of this theorem is that a mass distribution in a
thick spherical shell bounded by spheres of vaditd’ and b (b < b)
can be replaced by a coating on the surface b, so for as its external
effects are concerned. This may be proved as follows.

Potential at P due to an element dm (Fig.5) at a point
(v, 8, ¢") is SV:dm, ¢ being the distance of P from dm. The
4
potential due to the volume density is
v r rrr J-H p (@, 0,¢") ¢ du' &' do’

-1 V=2 cos &
/!

:f' r" ["' Yo, 8, ¢") [1 P, (cos &) +% P, (cos§)

0 J-l r

0

/)
o

+ 15 Py (cos t) + ...]dm N~

*Routh’s Statics, 77.
t MacRobert, Spherical Harmonics, 163.
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U S PV 1 r
and V= [ [0 0,80 [P eos 04 5 Pyeosy

v odo J .
+ 1T3P2 (cos ) + -l de forr < 7',

Denoting the external and internal potentials by V. and V;, we
have

o ' nt2

v, = ﬂ H 0,0, ¢) - Tnﬂ P, (cos 8) du’ &’ dé’ ... (4°7)

and Vo= 5[ [ {p0',0,9) 15 Pu(cos ) du’ & ag’ .. (4-8)

If we know the law of variation of density p, the external and
internal potentials are known.

For a given value of ¢/, let p (+', &', ¢') be expanded in the form

p (W, 0 V=2, (', 0, ¢).
b em [ +1 T’ n+2
Then V,= 3 3 j’ j j u, P, dw
y

0 -1 putl

1
= 4 2 [ j' " A Joat2 d .’.
T (2n+1) rntt e (95 ¢, 17) 5 !
The potential due to a coatlng’ o =3 v, on a sphere of radius U at
an external point " i

bn+2 1
V= Tntl P (© 9).

The two potentials are equal, if
b , ’I" n+2 ,
Va =” Uy (r s 0; ¢) ( ) bl’l' .
v b

Knowing u,, we can determine v,. It is to be noted that the coat-
ing has the same mass as the matter inside the spherical shell.

The above examples amply illustrate the fact that it is not
possible to infer the exact distribution of the disturbing masses
from the gravity anomalies; the total sum of the disturbing
masses can, however, be deduced from them. This can be seen by
an application of Gauss’ Theorem that if Ag is the attraction due

to a system of masses inside a body, jj AgdS = 4mM, where the
integration is carried over the surface of the body and M is the
total sum of the masses. For a plane area, jAgdS = 27 M.

The value of this result lies in the fact that if the disturbing masses
are at small depths, their effects fade off quickly with the distance.
Consequently the integral of the A¢’s in a limited disturbed area
will approximately give the magnitude of the masses causing them.
This result is valuable since the gravity anomalies and undulations
of the geoid depend more on the total disturbing masses than on
their disposition.

It should, however, be borne in mind that the number of solu-
tions is limited in practice by certain considerations. As an example
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of this we will show that a set of gravity anomalies can be explained
theoretically by placing suitable masses at any given depth. In
actual practice, however, if the masses are placed below a certain
depth, the extent required is such as to make their existence
physically improbable. To see this, suppose the gravity anomalies
on a sphere of radius a al e expressed in a series of spherical harmonic
functions as Ag=2¢, Y.. We shall see later that these can be
explained by a swrface density ¢ =20,Y, on a sphere of radius
(a—z), where

_ O ?’I’l“’l)( a >'n+2 49
T = gwf \ mt1 a—z) - (409)

To find the effect of the depth, consider a series of warps of
wave-length 300 miles on a sphere of radius 3960 miles so that

2ma

— - =300.
n

In equation (4-9) replacing o, by an equivalent thickness of
H miles of rock of volume density 0-02 gm/em.?, we sce that to pro-
duce an anomaly of 0-02 e¢m./sec.?, we must have H=1"47 miles for
depth =0, and H=1:53 miles for z=2 miles. For this small
increase of depth, therefore, the increase of H does not amount to
much; but when the increase of depth is comparable to the
wave-length, a considerable increase of thickness H is required. Thus
for z = 150 miles, i.e. at a depth of half the wave-length, H =39
miles.

To further illustrate the point, consider the cases of a plane,
a spherical and a cylindrical deposit. The attraction of a circular
dise of radius @ and surface density o at a point height %, is

Ag=2rraf<1 S ) —27afF (say).
v a+ R
The variation of I with /a is shown in the following table:
L3 F L r
[ a
0.00 1-00 1 |0:29
0L | 0-99 2 | -1t
105 +95 3 <05
0| 90 | 10 | -005
60 { 49 | 20 | -0013
0-80 | 0-37 {100 |0-00005

We see that for a given dise, F decreases but slightly with
depth when Afa is small. A par ticular case, in which the attraction
is independent of the depth, is that of the infinite plane correspond-
ing to h/a=0. For lar ge values of A/a, however, I decreases as the
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inverse square of h/a. 1In other words, doubling the depth of the
plane mass necessitates a fourfold increase of density to produce
the same effect.

A spherical mass of radius 10 km. having a density difference
of 01 gm./em.? from the surrounding material, will produce a
A g = 0-028 cm./sec.?, when it is tangential to the ground surface,
and a A ¢g = 0:003 cm./sec.?, when its centre is at a depth of 30 km.
At a depth of 30 km. or more, therefore, its effect cannot be measw-
ed with certainty. If the given gravity anomalies have to be
explained by such a mass at a depth of 30 km., we will have to
postulate for it a much greater difference of density from the
surrounding masses.

A cylindrical mass of radius } mile and thickness 1000 feet
produces a Ag = 0017 cm./sec.® at a point on its axis, 100 feet
above its upper surface. When placed at a depth of 12,000 feet its
effect is only 0-00089 cm./sec.?, i.e. about 20 times less.

The foregoing examples show that it is possible to infer from
the gravity anomalies an upper limit to the depth at which the
disturbing masses can lie. At greater depths the density inequal-
ities required will be too great to he physically possible.

6. Mass anomalies expressed as a coating.—In deter-
mining the difference in arrangement of the masses inside the
earth from an assumed standard distribution (like the isostatic),
it is best to idealize the earth in such a way that all masses
protruding ahove the geoid are removed. One method of doing
this is by the usual isostatic reduction, which removes all the
topography external to the geoid, and also its compensation as
postulated by Hayford. The equipotential surface of the new mass
system, which has the same potential as the geoid (V = (,), s
designated as the compensated geoid.

Let R be a uniform spheroid ( Fig. 6)) so chosen that the value
of potential over it is U = (,, and such that its volume is equal to
that of the compensated geoid. The compensated geoid is the
equipotential of the matter within the following surfaces: uniform
spheroid R, matter 4 between the compensated geoid and its reference
spheroid R, matter B between the compensated and natural geoids,
and the anomalies from uniformity. These anomalies may either
be deep-seated or close to the surface. Let their effect be equivalent
to a skin distribution o, on the spheroid. Hence the compensated
geoid is the equipotential of the uniform spheroid + skin density
o, + matter p (N + N.), where p denotes the density of the earth’s
crust, N, the height of natural geoid above the compensated geoid,
and N the height of the compensated geoid above the spheroid .

Imagine the mass p (N + N, ) to be condensed as a skin density
on the spheroid, and let o, + p (N + N.) = 0. Our new mass
distribution, then, is a spheroid R + a skin density ¢ on it. WO
will designate by corrected geoid that equipotential surface of this
new maess systemn, which has the same potential as the compcnsated
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geoid. The separation N, of the corrected geoid from the spheroid
is due to the effect of the skin density o. This concept of skin
density is very useful for the solution of many problems; if one
deals with the three dimensional distribution of mass as found
in nature, the corresponding formul® become unmanageable.

As argued before, so far as the effect of coating is concerned
the spheroid may be replaced by a sphere of appropriate radius.
The potential 8V at an external point due to coating ¢ = p% Y, on
a sphere of radius k is

SV=dmfohk3—1 (ﬁ)”“r1 Y,

2n+1 \7»
—dmfpkS—2_atr =k
2n+41

Hence, assuming the ratio between the crustal and mean density
14 3 Y.

of the earth to be 2:07, we have N,= G307 sl
The attraction of this coating at » = k is

n+1

an+1""

Ag,:-—%(SV) =4mfpZ

Y,
= p> (Y Y
2mfp ¥ 2n+1

. . 2:07
=2mfp [DEL ‘pN+N)+ 97 3.

If g, denotes the value of gravity on the corrected geoid, and
v, on the spheroid, excluding the attraction of o, then

(4-10)

2a
gd—'Yo:Ag‘r_ —kM[
. 2-07 . -
=2ﬂfp[”‘+P(N+N)+ VNJ—S-fZEN,/]
P 3 3
=92nfo, + 2w fp(N+ N, — 2-07N,) L(411)

Let o, be equivalent to a thickness of H feet of rock of normal
density, i.e. ¢, = p H. H represents the mass anomaly measured in
feet of rock of normal density, and is given by the expression

1
H=2—7Tf?(gd_%) —(N+ N.—2-07 N;).

Taking f = 6-68 x 10~® cm.3/gm. sec.” and p = 2-67 gm./ecm.3, we
have H (in feet) = 29-2 x 103 (¢,—v,)—(N+ N,—2-07 N,;). (4-12)

This formula has to be reduced a bit further, as in practice
we do not know the corrected geoid. Let P be a point on the
compensated geoid, and P, a point on the corrected geoid, verti-
cally below or above P. From Fig. 6 we see that

2y, N . . . ,
g9.= ('Yo— ryk ) + attraction of o, + attraction of matter
p(N+ N.)at P,
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2+, N, . )
and g,= ('y,,— 'Vk ) + attraction of coating {al—i- p(N+ NC)}

at P ds

Hence o {attraction of matter p(N + N,) at P — }
Je = 9¢= Y attraction of coating p (N + N, ) at P,

+2£—"(M—N)

-t s (55 o

where the volume integral extends throughout the space ( N + N.),
and o,= p (N + N.) is the skin density on the spheroid. The terms
in integrals on the right-hand side can be evaluated rigorously with
the help of Hayford’s reduction tables, provided the undulations
(N + N,) are known all over the globe. As far as our present knowl-
edge goes, ( N+ N, ) can have a maximum range of 500 feet. Itis
quite easy to show that except for very uneven terrain, the second
term within brackets on the right-hand side of equation (4-13)is
negligible. The first term amounts to 0-001 c¢m./sec.? for N,—N=10
feet. The average distance between the compensated and corrected
geoids is much less than this; hence for all practical purposes, g. may
be put equal to ¢.. Also to the order of accuracy to which we are
working we may put N;=Nin (4-12). Our final expression for
the anomaly then becomes

H=29-2 x 103 (g.—7,) — (N.—1-07N). ... (4-14)
The difficulty in the practical application of this formula is that
the spheroid used for computing v, is oriented differently to that
from which N, and N are reckoned. This difficulty will remain until
we refer our triangulations to an earth spheroid, or until a suffi-
ciently dense mesh of gravity stations is available on the globe, from
which N can be computed by Stokes’ formula.

In India, N as evidenced from a study of the plumb-line deflec-
tions ranges from — 20 to + 140 feet, but most of the change 1s
located in the narrow strip between Mandalay and Mergui. If one
neglects this portion, N ranges from —20 to + 40 feet, i.e. displays
a range of 60 feet only. This thickness of matter, even if it be of
infinite extent and of as great a density as the normal density of
the crust, produces a gravity effect of only 2 mgals. Mass anom-
alies of this order are not of much interest. If we substitute In
equation (4-14) the gravity anomalies in India, we see that H
varies from —2,000 to + 1,000 feet. In particular, the Gangetic
plane is an area of underload, the deficiency there being equivalent
to a skin density of —3500 to — 2,000 feet of rock condensed on the
spheroid. These are rather large departures from isostasy, but one
cannot argue from this that there is no compensation. If this were 80,
rigorous topographic reduction should give zero anomalies which 18

by no means the case. Some sort of compensation has to be pos-
tulated.
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Instead of assuming the standard earth to be isostatic we
might start with the three-layered crust, and infer from Ag’s the
interactions of the different layers with one another. As an example
of fitting observed gravity anomalies by trial and error by assuming
warps at the interfaces, may be mentioned the work of Ansel*.

The above discussion holds when the objective is to find the lack
of equilibrium of an extensive region or of the earth as a whole
from some assumed normal state. We employ the earth spheroid,
and it is imperative to use a physically plausible gravity reduction
like the regional, because we want to get the absolute value of H.

When, however, the area under investigation is of comparatively
small dimensions as in geophysical exploration, the thing of interest
is the variation of H and not its absolute magnitude. We can now
use the spheroid of best fit to the area in question, and the reduction
to be employed need not be mathematically rigorous, since the effect
of distant portions is practically constant over this limited area.
As examples of such reductions may be mentioned the flat earth
Bouguer, V. Meinesz’s modified Bouguer, and Glennie’s {g—1;)
reduction.

The indirect effect due to the separation between the geoid
and the spheroid is of no moment in this case, and it is customary
to find the disturbing masses by trial and error. The following
table will illustrate the case in point. It gives A9, A,g at a point
in the centre of a spherical cap of radius » and height h.

rkm, 100 50 100 50 10
h km, 3 3 1 1 1
Ajg gals 0-341 0-336 0-115 0-114 0-110
Ayggals 0-011 — 0-005 - 0-004 — 0:002 0-000

The indirect effect can manifestly be neglected. We will discuss in
the next para the attractions due to different types of attracting
masses,

7. Direct effect.—

(7) Infinite plane with « constant surface density o. Attraction
due to this is

Ag=2m7fo. ee. (4+15)
From this we see that 30 feet of rock of density 2-67 produces
Ag=0-001 gal. This is a very useful rule for rough estimations.
(t0) An infinite planc at depth z with a surface density
o =ag,cosna’ (Fig. 7).
At a point 4 (,z) on the carth, the vertical attraction due to
an element da’ is

ofy. T4 o (4°16)

(@' —a)*+2°"

* Angew. Geoph. 8, 1937, 141,
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Hence, due to the whole plane,

+oc
o,cosnz dr
Ag (2) = 2fzj ("w,_w)zﬂg =2 fo, e cos n . o (4017

If we know z, we can get an idea of o, from the known values of
Ag ().

As an example, suppose we want to explain the g-anomalies on
the Hidden Range in India by assuming an upwarp in the crustal
layer at depth z=2 miles (say). If we take the Hidden Range to
be a part of a series of harmonic undulations of wave-length 300
miles, we have

n=g71andz=2.

300
Hence, by equation (4-17),
Ay 4 A 4 N
v | = g7 ™= fgaaxioms X ¢ M= X104

Let o, be equal to H Ap, where Ap, = 0-2 gm/em.?, so that H will
be the thickness in cm. of matter of volume density 0-2 gm./cm)}
Then we have
. 7-8x 106
H )=
(in cm.) 53
Taking the mean anomaly on the top of the Hidden Range to be
0-02 cm.[sec.?, we get H = 4-8 miles.
(231) Spherical disc* (Fig. 8). The attraction of a spherical
disc of radius k, surface density o and angular extent 6, at a point
at height 4 above its middle point, is

rhfo 4k (k+h)sin® 3 — 20k |°

(k+h) ,\/h"’+4k (k+1) sin® 2
0

Ag = 39 x 108 Ay.

‘When % is small compared to k, we have

Ag=27fo [sin 6 _ 1 coslecﬂ +3 sinﬁ)

2 2k 2 2
h . 0 a
+8—k2 ( 15 sin E +9cosec ’é-)
2h 312
- =4+ ==)1. ... -19
+(1 k+k2)] (4-19)

(2v) Spherical coatingt. In sub-head (77i) we have consid-
ered a uniform spherical coating of limited angular extent . We
will now deal with the more important case of heterogeneous coat-

ings extending over the whole sphere and will consider in turn the
anomalies produced by

(a) an uncompensated skin density

* Helmert, Hoheren Geodiisie 2, 1884, 89. .
t Formule similar to the ones in this para have been used by Jeffreys in
“I'he Earth”, p. 221 and by Stoneley in M.N.R.A.S. Geoph. Suppl. 3, 1933, 176.
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(b) a compensated skin density

(¢) undulations at the interfaces of different layers of
the earth’s crust at known depths.

(a) Uncompensated skin density.—Consider a spheroid having the
same volume as the earth. The actual earth is, therefore, made up
of this spheroid with uncompensated topography of total mass zero
superposed on it. An idea of the effects of this mass may be
obtained by condensing it as a coating of skin density ¢ on a sphere
having the same volume as the spheroid. Let the level surface r=a
be deformed by an amount N on account of the superposition of skin
density ¢ = 2o, S, on it, S, being a Laplace’s function of order ».

The potential due to this coating is

_y dmf o a

V=2 Qnt+1 ol

Hence N = Y :71,» rmfa a, N,
G G 2n+tl
The direct effect of the coating at r=a is
3V 1 .
Ay=— — = 4 -— - O, S.,. . 20
J Sr 2dmf 2n+1 7 (4 )

If the indirect effect is also taken into account, the usual conventional
anomaly is

g, ‘S’u .

2V e n—1
=Ag — 21 = RO y 49

Ag, g " 4t > o T 1 o, 8, ... (4-21)

Suppose, now, the skin density is represented by the single
harmonic ¢, 8,. We see that for large values of » (1.e. for local
features), the anomalies Ag¢ and A ¢, are practically identical,
which means that the indirect effect is of no consequence. For
small values of =, however, (i.e. for wide-spread inequalities),
the indirect effect is material, as can be seen from the following

table:

n = 1 2 5 10 50
Ag in gals= 24 22 - 20 -19 -18
Ag ingals=  -00 07 13 15 -18.

This table has been derived by putting o, S, = p 1 S,, and assuming
p =267 gm./cm.? and % S, = 1 mile.

(b) Compensated skin density.—The results for this case would
depend obviously on the type of compensation postulated. Suppose
in the first instance, that the skin density ¢ =7, 8, is compensated
according to Pratt’s hypothesis, the depth of compensation being T.
The compensation mass is distributed between the spherical surfaces
@ and a—7, and its density is given by the usual equation

_ 3a’
Pe= ai*:(—a-—h'ry{ o, S e (4-22)
The condition utilized for obtaining this expression is that the mass
of the topography and its compensation in any unit eolumn are the
same.
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The expression for the potential of the coating has been given
already ; the corresponding potential due to this compensation is
4 ’7Tf 3 artd— ( a—T )’n+3 g, S
Vc': R . . n a .
2n+1 n+3 ad—(a—T1)3 ar~1 (4-23)
Finally, the anomaly g—r, produced by this topography and its
compensation is

—1 8 CL"+3—( a—T )q,+3
Ay 2 =4 g, 6'11 [ ] - oo e ]
9> mr 2’n+1 ' (n+3) B—(a—T1)

P—n—27 T\*
™ 2 +1 2a 3a+ 12 a ’

We next proceed to the case when the skin density is compen-
sated according to Airy’s hypothesis; i.e. the compensation has the
same mass as topography in a unit vertical column as before, but is
spread over a sphere of radius (¢—4 7). The density of compen-
sation is

2

g, = o,"/ Sn; where o-u’ = 0, L 3 (425)
(a—3%7)
Proceeding as before, we have
i _1 T "

A 3 = . In— nPn [1— 1'— *“) ] 4"26
G=47f g T S ( 2a (4-26)

n—1 nT n— 1 T

= SR n Sn - I:]- —a
dmf 2n+1 7 2a 2 2a

POmD 0= Ty ] )
6 2a

We will now give another solution based on the condition that
the topography and its compensation make the compensation surface
r={(a—47) an equipotential. The internal potential of coating
[ AS’M iS

47Tf .o, S” _L,
2,n+ 1 ar~1
and that of coating o,” S, on sphere r = a—1} 7 is
4rf ' g 7:1—57;)1*?
2n + 1 H n /rn+1
The condition of equality of these for r=a—1 7 is
! n—1
T =(1_L) , e (4°28)
o, 2a

We see that the law of compensation is quite different from
that obtained in (4-25); the corresponding anomaly g —, is

a’“+20- - ( a— é T )"+20-u :|

A(/L—47Tf2 +IS’ [— e

. m—1 [ ( T )2u+1]
= —_— 1— 1_— n n
4 f o1 5a o, S
_ 4N T _nT n(2n—l)< T )\* ] S. .
= /1'77")(.(711 1 ) 2a [] 2a+ — - 3-’ é;) + Ce Ty O
(4:29)



The above results may be summarized as follows:

Ag=4m7f. Zﬁ% .0, S, = Direct effect of an uncompensated coat-
n
ing 6 =2 0,8, on a sphere of radius »r=a.
Ag,=4mf. 2@;__’_—11 o, S, = Conventional anomaly due to the above
)
coating.
Ag, =47 f. —27%—+—11.a,, S, .—g— % ( 1- g‘—:) = Conventional anomaly

due to coating o = 2o, S,, compensated according to Pratt’s
hypothesis, the depth of compensation being 7.

Ag, = 477.;‘.2::__*_ io,, S, . 2 %( 1— ZL—_T;:) = Conventional anom-
aly due to coating o = 2¢, S, compensated according to
Airy’s hypothesis, the depth of compensation being 7/2.

. m-~1 T 2n+1 nT
tmf. 2L, T 1
" 1T T 2 %a
aly due to the above coating, compensated in such a way
as to make the compensation surface r =a — } 7 an equi-

potential.

Ag, ] = Conventional anom-

The following table gives the maximum values of the anomalies
as computed by the above formule, due to a coating equivalent to a
thickness of 1 mile of rock of normal density 2-67. The values of the
constants have been taken as o,= phS,, hS,=1 mile= 16093426
em., p=2+67 gm./em.’, 7=114 km., a= 6370 km. and f =6-7 x 1078,

" Ag A Ags Ags AVA
gals gals gals gals gals
1 2412 -0000 -0000 -0000 -0000
2 2171 0724 0013 0013 0032
51 -1973 1316 0057 0058 ‘0124
10| -1895 1551 0130 0133 0265
50| -1827 1755 0551 0613 0876
100 -1818 -1782 0643 0888 0337

From this table we can get an idea of the anomaly expected
on a perfectly compensated earth when the topography can be
represented by a single harmonic of given amplitude. The figures
represent the resultant effects of the attraction of the masses, and
the distortion of the level surface. So far as the direct effect of
the actual topography and its Hayford compensation is concerned,
1ts magnitude is generally of the order of 30 mgals. For Himalayan
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stations, however, it can be considerable ; in some cases it amounts
to 160 mgals, the free-air correction being of the order of 1000
mgals. For stations near the sea also, the correction for topogra-
phy and its compensation is large, but the height correction in this
case is negligible.

(¢) Undulations® at the interfaces of different layers of the earth’s
crust at known depths.—

The effect of crustal warpings or bucklings at the interfaces
can be dealt with in two ways:
(1) By the method of spherical harmonics.
(2) By the formula for attraction of a prism of given
cross-section or of a parallelopiped.

We will consider (1) here ; formula for (2) will be given later.

Suppose the gravity anomalies Ag=2X g, S, are due to warpings
which may be considered as a coating of surface density ¢=3¢,8,
on a sphere of radius (a—z). The potential due to this coating at
a distance r is

4dmf (a—z)t?
U= 2 ” Sil
U= In+1° gl a ’

and the gravity anomaly on sphere of radius « is

n+l [ a—z \"+? ,
@g) =3amp. L (225) es,
= zgu Sn-
1 2n+1 a \"*? )
Hence o,= Tnf n+1>(a—z) Tne ... (4-30)

If the volume density at the interface be Ap, we have o, = H,Ap,
where H, denotes the amplitude. Knowing A p and 2, we can find
from (4-30) the ¢,’s corresponding to given H,’s, and vice versa.

As a particular case of the above suppose a surface density
a=a, sin® 26 is superposed on a level sphere of radius a. In terms
of spherical harmonic functions

oc=0,8in? 260= 460(1 P+2P §P4)

21 35
=34, P,.
It gives rise to the potential {
n+2
2 4 a
V=dmf n+1 ot A P
4, P

=4 2 ndn =a.

Tfa om 1 for r=a

* ‘Jtonclcy, M. N. R. A. 8. Geoph. Suppl. 3, 1933, 176.
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_V= 4mfa EAMPn
Hence N_E a I+l
_EA by An Pn
N P - n -+ ]
120, I‘ 2 2 8 ]
=01 2 P+ ——P,—-—P
on L5 0t 105 27 315"
=_2_’:'70 §_§+§—§ sin%’—%sin*ﬁ)
The corresponding anomaly (g—v,) is
_ 2Ny _ _(8V\ _ 2Ny
Bg=tvg-= = (5, ) p

The case where there are warpings at two interfaces at different
depths cannot be solved uniquely unless some assumption is made
about the ratio of the amplitude of the two warpings.

(v) 4 sphevical mass M at depth d. The direct effect at a
point digtant »=,/2>+ d? from the centre of the sphere 1is

JM. d
.
(f+d%)*
The attraction decreases with the depth according to the

inyel'se square law. The deformation of the level surface due to
this mass at a point at height d above the centre of the sphere is

V fM
N=—=+4—,
G Gd
The direct and indirect effects at this point are

Ag=TM A = 26N _ M

A g=

Eg_) 29= R - Rd H

where R is the radius of the sphere.

Their 1'atio—Al—g =
A,g 247

1s taken to be much greater than its depth.

Since we always look for irregularitics in the upper layers of
the earth’s crust (i.e. when d is small), it is always permissible to
neglect 4, . For a given d, the variation of A, g with the horizontal
distance « is given by the following table :—

a large quantity if the radius of the sphere

2 0 | +d|+2d|+5d|+10d
Byg | 1 | -35 | -09 | 008 -001
M| & pE & & @

. (v} A two-dimensional feature.—Consider a vectangular cylindey
with crpss-section a y as shown in Fig. 9. The cylinder is of infinite
extent in the direction perpendicular to the planc of the paper.
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The vertical component Z, of the attraction of the cylinder
at the point O is

; 2
Zy=2fp [y log tan%+%m log (l+ ZQ)]
=pyF, w. (4-31)
where F=2f [log tan p+ 119 100‘(1 +L):|
2+ °°° /L
and p=i. ee. (4-32)
£)

The values of F for different values of p have been tabulated
by V. Meinesz*. With the help of this table, the attraction of the
cylinder for any position of O can be easily deduced. The chief
value of this formula lies in the fact that it enables anomalies to be
deduced for the case when the normal structure of the earth is
assumed to be three-layered, and when the anomalies are due to
intrusion of one layer in another.

(viz) A triangular prismt.—Suppose we want to find the attrac-
tion of a prism at the point C (Fig. 10). Let CAB be the cross-
section of the prism through C, and let L,, L, be the lengths of the
prism on either side of C. The expression for the potential at C' is

V= fpb*sin®> 4 {cot 4 (log % + %)

+ cot B (log%+%)— L0}, .. 43

where L= /L, L,
The vertical attraction of the cylinder at C is

Ag= 2fpbsinA{Ccos (A—¢1)—(log%)sin (A—qbl)}. (4-34)

This formula is especially useful when we are trying to find
the attraction of a long mountain ridge. It has been used by
Thyssen 1 to examine the difference between a theoretically calcu-
lated and a measured gravity anomaly.

(veii) Attraction of a parallelopiped.—
This has been dealt with in detail by E. A. Ansel§, who has
applied the formul® to several practical cases.

8. Gravity reductions for deducing subterranean
anomalies :—The observed value of gravity at a point on the
earth can be made comparable with the normal theoretical value 7
by applying certain corrections to it based on different hypotheses.
It is not proposed here to go into the merits and demerits of
the various reductions usually employed. In this para we will
offer some justification for Hayford’s isostatic reduction method.
Hayford’s postulate of local compensation is unreal in the light of

—

* Gravity Expeditions at Sea, 2, 1923-32, 24.

t+ Helmert, Hoheren Geodiisie, Vol. II, 277.

1 Beit. Zu Angewandten Geophysik, 7, 1939, 366-91.

§ Beit. Zu Angewandten Geophysik, 5, 1936, 263-95; @, 1937, 141-167)
7, 1939, 21-38.
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our modern knowledge about the structure of the earth, and
geologists are apt to discard without much ado any results based
on this theory. Indeed it has been argued, that whatever success
this hypothesis has achieved is only due to the accidental cancella-
tion of different factors. To test this, we will compare the usual
isostatic anomalies with those based on other hypotheses for the
Himilayan stations. We have chosen mountainous stations for this
purpose, because the anomalies there display larger variation.

In the following tables, Ag,, Agp, Age correspond to free-air,
Bouguer and the usual isostatic compensation anomalies respectively.
On the Airy’s hypothesis, anomalies are computed on the assumption
that the thickness of the crust corresponding to zero elevation of a
region is 40 km. S,, S, ave based on V. Meinesz’s hypothesis of
regional compensation, as described in para 1; Agcy is the Hayford
anomaly on the Helmert spheroid and Ager on the International
spheroid.

Table A gives the anomalies as well as the means with and
without regard to sign for stations in the Kashmir area. Some of
the remaining typical mountainous stations are shown in Table B.
Table C gives the anomalies at the three stations Darjeeling, Kur-
seong and Sandakphu, which lie practically on the same meridian.
The ranges of the various anomalies are also shown in a tabular
form.

TABLE A

)
A =
% Station .%‘3 Ag, ag. Ago 89, Airy I S,
8 ot

feet | cm/sec? | em/sec® | emfsec? | emfsec® | emfsec | em/sec? | cm/sec?
1 [ Murree .. | 6885 | +-032 | —-184 | —-025 [ —-040 | —-027 | —-024 | —-029
2 | Domel v | 2239 | —-167 | —-227 | —-048 | —-0B3 | —-025 | —-013 | —-010
3 | Shadipur .. | B193 | — 116 | —-286 | —-030 | — 045 | —-017 | +.001 | +-012
4 | Gandarbal Lo 15200 1 —-094 | —-26] +:010 | —-005 | +-:023 | +-:043 | + 056
5 | Hayan ...| 6084 | —-105 | —-281 | +-017 | +-002 | +-021 | +:042 | +-057
6 Sonﬁma,rg' o 1 9050 | —-013 | —-296 | +-:043 | +-028 ) +-078 | +-:065 | + -084
7 | Churawan .| 8151 | —-056 | —-306 | +-:032 | +:017 | +:038 | +-057 | +-076
8 | Minmarg .| 9351 —-033 [ —-324 | +-035 | +-020 | +-040 | +:058 | +-078
9 | Deosai T o (13311 40246 [ —-298 | +:090 | +-075 | +-:094 | +-128 | + 153
10 | Deosai II oo (12805 | 4+ 0094 | —-332 | ++062 | +:047 [ +-065 | +-102 | +-126
11 | Deosai ITI .. 112391 | + 111 ] —-301 | +-095 | +-080 ; +-100 | +:135 | + -160
12 | Lalpur v | 5633 | —045 | —-230 | +-017 | +-002 | +-037 | +-129 | +-137
13 | Srinagar o | 5198 1 —-070 | - 240 | +-021 | +-006 | +-034 { +-052 | +-063
14 nga,l:m Lo h22T ) — 073 | =245 | +-012 ) —-003 | +-030 | +-039 | +-050
15 | Yiis Maidan | 86T L+ 021 —-234 ] +-008 | —-007 | +-006 | +-014 | +-021
18 | Korag oto9s2 | 40149 | =205 | +-034 | +-019 1 +-037 | +-029 | +.035
17 } Tosh Maidan L TO31H ) + 0135 ] —-198 | + 050 ) +-035 | +-050 | +-055 | +-061
can without regard to sign = -086 <262 037 -028 042 - 058 -071
n  With w oy = | —-005| —-262 | +:025| +:010 | +:034 | +-054 | +-066
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on the surface of compensation 8. The physical definition of
isostasy demands that the compensation in nature must be so
arranged that the topography and compensation make the compen-
sation swrface S an equipotential. Hayfordian local compensation
fails to satisfy this condition, and the usual isostatic reduction so
displaces the masses that hydrostatic equilibrium does not prevail
on and below S. To preserve the equality of mass of topography and
compensation and in order that the physical condition of isostasy
may not be violated, the compensation has to be regional rather than
local. Jung* has estimated that the results from rigorous isostatic
reduction differ materially from those of the usual isostatic reduction,
and hence our usual Hayford anomalies are not suitable for judging
equilibrium of the earth as a whole. This is no doubt true, but it
should be borne in mind that although Jung’s true isostatic reduction
satisfies the physical condition of the floating crust, there are
several sources of error which still remain. Amongst these may be
mentioned the ignoring of the stresses in the earth’s crust. Our
lack of knowledge of these stresses introduces an element of uncer-
tainty in all the reductions.  Again, in reducing the observed
gravity on the earth to the level of the geoid, the vertical gradient
8g/6h 1s allowed for by the normal free-air formula. There is little
doubt that this gradient depends on the irregular distribution of
visible and buried masses, and varies from place to place. There is
also the inevitable uncertainty in the assumed density and depth of
of compensation, which militate against a reliable quantitative
estimate of the mass anomalies being made.

9. Choice of normal gravity for deducing mass
anomalies.—In this chapter we have discussed the methods of
estimating mass anomalies with the help of gravity anomalies
reckoned from an empirical gravity formula. The question of the
gravity formula to be chosen for this purpose merits some considera-
tion. As discussed in chapter 11, the formula for normal gravity
depends on three parameterst (., 4 and B, which are generally
deduced by least squares. We have seen how the value of G.
depends vitally on the distribution of observational material avail-
able. For instance, the International formula gives (.= 978-049;
utilizing the gravity data in India alone (available up to 1928),
the value of ¢ found} was 978:021. For deducing the magnitude
of the mass anomalies in an area, it is better to use the value of G.
appertaining to that area only, i.e. for India, we should use the
Swrvey of India value for .. This is specially necessary in the
case when the gravity anomalies in the limited area are of the same
sign. For instance, suppose the mean value of Ag on the Hidden
Range is given to be 0-02 mgals, and we are asked to deduce the
magnitude of the Hidden Range. If this Ag is computed with 2
wrong value of @, our deduced magnitude of the Hidden Range would
be wrong. These remarks also hold, when a profile of ag is given,

¥ Zaoit fir (teoph. 14, 1938, 27.

+ 'The formul® comprising the longitude term contain four parameters.

1 Survey of India, Geodetic Report, Vol. V, 55,
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and we want to find the masses responsible for it. A different G,
will reduce all Ag’s by the same amount and therefore absolute
values of the mass anomalies AM will be reduced. It is important
to note, however, that the range of variation of AM will be correctly
depicted, no matter what value of G. is selected. Also, the
effect of choosing slightly different values for the constants 4
and B in the gravity formula is immaterial when we are dealing with
a limited region.

10. Summary.—Gravity anomalies at sea have presented
peculiar features, whose interpretation is still not complete. On
land, gravity research has afforded valuable clues about the tectonic
folding of various regions, and the thickness of the earths’ crust
therein. On the quantitative side, one can deduce from these anom-
alies the departures from isostatic equilibrium expressed as a
thickness of so many feet of surface coating having the same density
as the earths’ crust.

By trial and ervor, it is possible to fit the observed gravity pro-
files by assuming appropriate mass distributions. Formule have
heen given for the effects of some typical attracting masses.

The question of the gravity reductions and the choice of gravity
formula for deducing mass anomalies have also been considered.



CHAPTER V

STOKES’ FORMULA AND THE UNDULATIONS OF
THE GEOID

1. Boundary problems of potential theory and
geodesy.—In order to be able to understand properly the subject
of the undulations of the geoid as derived from gravity anomalies, it
is necessary to recapitulate a few facts regarding what are known
as the boundary problems of potential theory. These may be enun-
ciated as follows:—

(Z) Given the value of the potential on the boundary of
any surface, find its value at all points of space.

(7¢) Given the value of gravity at all points of the bound-
ary of a region due to the internal attracting masses, find the
potential tield at all points of space.

Problem (7) may be illustrated by the simple case of a sphere
with a coating of surface density o on it.¥ Let the known potential
at a point (#, L) on this sphere be
V(6,L)=2Y,(6,L)

n

ime L

{An P, (n) + % (A, cos mL 1
0 m=1

y e (5°1)
+ an sin mL) an (/u‘) )

where u = sin 6.

The coefficients 4,, 4., and B,, in this series expansion are known.
If V,, V. denote the potentials internal and external to the sphere
(assumed to be of radius a ), we have

Vi = 2(1)" Yn (93 L)
a"‘n'fl (5.2)
V6=E(%) Y, (6, L)

The skin density of the coating is

The expressions (5-2) for the internal and external potentials
can be expressed in a form in which spherical harmonics do not
occur. From (5-1), by known properties of spherical harmonics,
we have

Y. (0, L) =

22:1 HV (6, 'Y Py (sin &) d ' d I/,

where sin ¢ = sin@sin 8 + cosfcos 6 cos (L —I’'),and ' =sind"

* Mac Robert, Spherical Harmonics, 163.
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Hence Vp:i{jvngw[§ (2n+1) )Pddnn]dﬁdﬂ

4m n=0
om ~+1 , , 3
=1&&2ﬂj V6, L)  qvar
4m . ,_1(1'2 — 2ar sin £+ a?)e L
Similarly, e (5°3)
( 22 ) 2m +1 v ( H ]_ )
a{r—a? ’ P
=2 7 du' dL
Ve 47 L “—1( 1 — Qar sin £ +a? )i H

These formulxe will be made use of in paras 4 and 5.

Problem (<) is also capable of an casy solution for the case of
a sphere. Suppose gravity g=f (6, L)=XY, (0, L) is known on the
sphere. The external potential function V. is such that V*V,=0 in
the space external to the sphere, and

(_%%)=f(aLy

r=u

The

Taking V.=
second condition gives

po,0)y=s D% sy (o 1), or u,= 2L Tn

e n+ ].

a1b+2 17”
Hence V.= Emi.

The internal potential V; can only be written down when the internal
masses are known.

The above problems are also soluble when the boundary is
a nearly spherical surface, and the attracting masses consist of a
coating on it. Ingeodesy we are mainly concerned with the geoid,
which is a level surface of certain masses whose location and extent
are not precisely known.

In the problems of potential theory the boundary is not a level
surface but its form is known, while in geodesy the reverse is the
case; the boundary is a level surface but its form is unknown.
The fundamental problem of geodesy is to find the form of a nearly
spherical level surface from the variation of gravity on it, it being
assumed that there is no attracting matter external to the surface.

Conversely, if the form of a level surface of a system of attract-
ing masses which lie entirely within it is known, the external field
can be determined. We shall see that this field is determinable
without making any hypothesis about the distribution of matter
in the interior of the attracting system.

These problems have been a subject of great controversy on
account of the fact that the level surface of the earth with which
the geodesist is mostly concerned, namely the geoid, does not enclose
all the attracting masses.
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2. Stokes’ equations.—Chapter 1, para 6 gives Stokes’ solu-
tion of the above problems for a nearly spherical surface. It is
shown there that on the level surface

r=k(l+u,+tu+........ ) e (5-4)
having no masses external to it, we have

_ 5 1f :og 1 } _
g—G{1+—2~m (s1n9 3)+u.2+2u3+ ...... oo (5°5)

where G/ = k_Y2O_ :—i o?k and Y, denotes the mass of the attracting

body. Equations (5-4) and (5-5), known as Stokes’ equations,
are of fundamental importance in problems connected with the
figure of the earth.

From them we see that given gravity on a level surface having
no masses external to it, the parameters defining the shape of the
level surface are known. Theoretically, the linear dimension k
can also be derived from the variation of gravity on it, but its deter-
mination is so weak that it is of no practical value. As particular
cases we might mention that if the geoid is a triaxial ellipsoid, we
can get its axes and mass from values of gravity at four different
latitudes. In the case of a spheroid, we can determine the param-
eters k, eand M from values of gravity at three known latitudes. As
mentioned before, the determination of k is very weak.

The equations (5-4) and (5-5) also afford a solution of the
converse problem. They indicate that if we know r, then gravity
is known all over the level surface except for one constant. This
constant can be determined from the mass of the matter inside
the surface, or from the value of gravity at a point on or
external to it. In particular, a level spheroid and a triaxial ellip-
goid are defined by the constants (%, ¢) and (%, €, n) respectively.
The above amounts to saying that these constants are not sufficient
to express the variations of gravity on these surfaces; we need yet
another constant G’ depending on the mass of the body. The rela-
tion between @’ and M for the case of an ellipsoid with unequal axes
is given by the last of the equations (1:73).

3. Precision of Stokes’ equations.— From chap. 1 we
see that formula (5-5) is only correct to the first order of small
quantities. More precisely, the value of gravity on a surface of the
form (5-4) is given by formula ( 1-43), which differs from (5°5)
in the coeflicients of the terms P, and P,. In practice, however, we
work not with gravity on a level surface, but with gravity anom-
alies reckoned from a suitably chosen veference surface. Stokes
chose as his reference surface the spheroid

2
=k (1-2ep,),
on which gravity is

5 2
Yo=0 { 1+ (;m —6)3 P, }
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.
The separation between the geoid r=%k (1+ S w,) and this surface is
n=2
N= k{«eP Fugtu,+ oo }
and the gravity anomaly is
Ag=G{ 2 ePy+u,+2us+ 0 - 0 }

In these equations it is implied that G has the same value for the
geoid and its reference spheroid. Incorporating the term % ¢ P, in
uy, we obtain the two equations

N=kZu,
§ (5:6)

Ag=GZ3 {(n—1)u,

Stokes’ reference surface »r=% (1 —% e P,) is not an exact spheroid,
but differs from it by (25 e P,—%%¢°P,), which can amount to
100 feet in latitude 45°.

There is no objection to taking the above as a reference surface,
but Stokes’ method of deducing equations (5:6) is open to two
objections. One is that he uses an expression for the external poten-

w)

tial V,=3% V' ina spherical harmonic series, the convergence of

which has been doubted in the region near the boundary of the

V”-, where 7 is the

or
8V, _

radius vector at the point considered. Actually — S

where x is the angle between the normal and the radius vector at
the point considered. The error involved in this, for the case of a

geoid ; the second is that gravity is taken as —

spheroid, is gTaf =0(g €)= 0(10 mgals), which is considerable.

To assess the accuracy of equations (5-6 ), it is more convenient
to employ the method of their derivation outlined by Pizetti¥.
Let the geoid be

7‘//:]5 [I—GZY;L—GIEZIL] cae (5'7)
n=2 n=2
and 1its reference surface
r.,=k(1—ezY,, , .. (58)
n=2

it being assumed that €, is of 0 (€®).
For an exact spheroid,
2 23 12
€e2Y,= 3 € ( 1+ 4; € )Pg—gg eP,
By equations (5-7) and (5-8),
_').v N——ILEIEZ,;

* Atti della Reale. Acad. della Scienze di Torino, 48, 1911.
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Let the potential on the reference surface be U=W,, and on
the geoid, W=U+ 8= W,, S being the potential due to the coating
between the two surfaces. The mass of this coating is obviously
zero. We have

_ (W __(8_q+88>
9= W)gcoid— Bn' 8’)2,’ rgeoid,

where

B (g—'g ) geoid - (——Ss—g)sphcmid -y (%anz )spllcroid =Nt N (%ZLQ)

Hence
) oS . 08 . 28 68
g_,,():N(i)_ _2NG =

on =

= - = - 9
&n’ k on ° k 8¢’ (5:9)
where dr denotes the differentiation along the radius vector of a
sphere of radius k and G is the mean value of gravity.

If we take S=2 k*»*1Y,/r**1, we see that

Ag=5 (n—1) % and N =3 %

These are identical with Stokes’ equations.

We have shown in chapter 1v, para 4, that in equation (59)
each term is of order (ge€*), and terms of 0 (ge®) have been neglected.
Hence although Stokes derived his equations from first order
considerations only, still in the form ( 5-6 ), they are really correct
to 0(e?). If terms of O(ge?) were included in equation (5:9),
Stokes’ expressions for Ag and N would not satisfy it.

This can also be seen as follows. - Suppose the geoid is
rzkl:l—iePg-i-Eun]. .. (5-10)
3 2
By (1-43), gravity on it correct to order € is

g=G[1+aP2+BP4+§2‘.(n—l)u,,:l. .. (5-11)

This equation is obtained from the extension* of Green’s theorem,
that the potential of a rotating attracting mass is

2
U= ijﬂ.}.“’_.ﬂjﬂ +lw2r2é0536’, o (5°12)
4 r 27 2

r

and by utilizing the condition that this expression has a constant
value on the geoid.

If, now, the reference spheroid is taken as
2
= —_—— . 5 ‘ 13
7'3 k (1 3 GPQ) s ( )
then Y%=6G (1+aP,+BP,), . (5-14)

* Malkin, Gerl. Beit. zur Geoph., 45, 1935,
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1 2 64 ’ 4
where a= 3(5m _26)+6§€m —2—1—e~
= _i(l.’iem'+2e2) ee. (5:15)
L[ CONE O S B )
G= i 1— 3 m + 9 156 + 96m

From these relations we get the usual equations for Ag and (r—r).

It is interesting to show that the same relations are obtained
even if the equation of the reference spheroid be taken correct
to 0(e?). We have

=k[1—3 (1+§ )P+122P] . (5-16)

3 42 35
Putting
Uy = — 6252 Py, u, = % e P, and u,=u;=u;=etc.=01in (5-10),
we obtain
wma 15 (+= )t (5438 )e]
Hence r—r,=k [z—ge"R é—%egP,l,+ %u,,]
and  Ag= G[Eg &P, — %goP+Z(n—1)u,,],

These equations may be written as

r—r, =k [( (2;—363P ) + uy + (uL 1—263 )+ S u,,]

n=>5
Ag= GI_( Uy + °P )+ 2ug+ 3 (“x g€2P4> + 3w, ]
n=5s

and are of the same form as (5:6). We shall see in the next
chapter that this is only a particular case of a general theorem on
the choice of a reference surface.

It is important to realize that the coeflicients of the terms in
P, and P, in formula (5-5) are not correct to O (€*). But the
corresponding value of 7, is also taken with the same errors in these
terms, with the result that these errors cancel out in (g—v,) and
make the equations (5:6) correct to second order terms. The
necessary conditions which the reference surface has to satisfy for
the above to be valid will be discussed in the next chapter.

4. Form of the natural geoid, and deviation of the
vertical.—A question of prime 1mp01t'mce in geodesy is to find the
form of the natural geoid of the earth or in other words its deviation
N from a reference surface. This can be done by utilizing deflection
data or gravity anomalies. The method of determining N from
plumb-line deflections is, however, applicable only to a limited area
and is used to give the separation of the geoid froma reference spheroid
fitting that area best. The gravity anomalies enable N as well as

(5-17)
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the deflections (7, £) to be determined with reference to an absolute
spheroid called the ‘Earth spheroid’, (¢f. chap. vi). This universal
spheroid can also be obtained from deflections, if these were known
over the whole globe. But this involves the connection of all the
geodetic triangulations of the various countries, which is a remote
possibility at present on account of the apparent impossibility of
observing deflections on the oceans. The advent of new gravimeters
has now made the programme of covering the whole globe with a
reasonable mesh of gravity stations well within the range of
possibility. We will review here the method of determining N and
(n, £) from gravity anomalies. Two methods are available :—

(a) By a suitable hypothesis, all the masses external to the
geoid may be removed. The level surface of the new mass system
may be called the corrected geoid and its undulations may be
determined from the Ag’s. The distance between the natural and
corrected geoids is easily calculable from the known mass transfers

and when added to the above undulations will give the desired
result.

{b) ,The actual topography may be left undisturbed, and the
undulations N of the natural geoid may be derived by computing
the gravity anomalies on it. We will discuss this method in para 10.

Method (a) is the one generally used. The idealisation of the
earth which it involves may be performed in several ways as we shall
see in para 8. To illustrate the method we will assume that the
observed gravity values are rveduced isostatically i.e. the effects of
topography and its Hayford compensation are removed. The level
surface of the new masses is the compensated geoid, and we want
to determine its form. Our problem reduces to finding the form of
a level surface having no masses external to it, and this is given by
the equations (5-6), viz.

for : Ag=G§vn oo (5-18)
2

we have N = k§v,,/n—1. e (5°19)
2

To get N, we must know the series for Ag in spherical harmonics.
Ag is an observational quantity, and some attempts have been made’
to expand observed gravity anomalies on the globe in a series of
spherical harmonics. But it is a very laborious process, and a very
large number of terms are required for its adequate representation.

Stokes, however, connected N with 44 by a quadrature formula
which is of great practical value. From (5-18) we see that

2 A
v, = n+1jjpn_gdw,
47

where dw represents an element of solid angle on a unit sphere.
Substituting in (5-19), we have

1 & 2n+1'H.
N= — — LY .
yp= an;zn—l P, Agdw
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Now S 2"+11 P,=29% P43 5 P"].

n— n—

=2[%cosec%’—1—cos \]r] +3[1—cos«[r —2 sin }2_‘,

2

—cosvYr ]ogc(sin v + sin? %f)-l

=2 f (), (say),
k
and hence N= m“.f (V) A¢ do,

m

|8

:doAj Ag f (%) sinyrdyr, ... (5-20)
0 0

where yr and A4 are respectively the angular distance and azimuth
of the point at which N is to be determined from the point at which
Ag is taken..

Pizetti proved this formula independently starting from the
equation

Ag =5 _ 28 L (5e21)
E o ¥
Let =284 0 =1 0 (g, .. (5-22)
or r o

denote the value of 7 at a point P.
Integrating this, we have

Sy = j.'/' Tp dr+ C.
Also by equation (5-3),

_a ("‘2—(19) ( Tsphere d KL O
T = i jj e, e (5423)
where d* = &*++*—2 ar cos Y.
—_ 2
Hence S = ZCS; j- Tsphere j\—/r?’d#(l?‘ do + .
. oS o1
Putting 70 =28 +a o= ¢ Ay oo (5024
a
and integrating with respect to », we get for » = «,
s =g | {897 (¥) do,
27 )

the usual Stokes’ quadrature formula.

Formula (5-20) for N enables us also to find deviations of the
vertical (9, £) at any point O. In Fig. 11, let the gravity anomaly
at P be Ag. Then at O we have

N= 27’:(;”Agf(«p) de . (5-25)

If Ais the azimuth of P from O, reckoned positive from south by west,
and if 7, £ are the meridional and prime vertical deflections at O,
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reckoned positive towards south and west respectively, then differen-
tiating (5°25) and simplifying by spherical trigonometry, we get

1 3
n=—5.a JjAgﬁcosA dw
1 Sf .
E= —WJJAg %sm 4 de

5. Converse problem.—From the preceding formulae, we
can obtain a solution of the converse problem, namely, to find the
gravity anomalies from known geoidal undulations. This can be
done either by application of the equation (5:9) or from Stokes’
equations (5-6).

Asin (5-2) the potential S, (8, L,») at an external point of
sphere 1s

n+1
S, (6, T,r )_LHS(Q',L'){(WFU(FL) +P,,(cosc)}
4 P
du’ dL
5 02"+1 ’ ’
=a(7'~—a~)J" S(6,L) Cdw dI/, (5+27)

4 {(r*—2arcos {+a*)*
0 -1

where S (6', L") denotes the potential ata point (¢',L") o |
sphere, and {is the angle between the directions (8, L) and (¢', L)

Hence(s_‘s’f)_ L”S(ﬁ’,]/).i—cosec:*gd,u.'dlf . (5-28)

(526)

& T a,
and (28”) =1 jj{2(2n+1)P,l}8(9',.L')cl,u/dL’
7 r=a 47a
=1 ”S(G’,L’)clp/clL’. (529
47a

Substituting in (5-9), we have
p— — ]- 3 _{ ’ 7 !- . 30
A=t ”N(l | cosee 2)@ dL’. ... (5+80)

Alternatively,* starting from equations (5-6) and putting
N=FkF (0,L), we have

+1 2n
. = 2"+1j j F(O, 1) P, (cos t) du dI/.
4r
2100
Hence
T 2m
Y , ,
Ag = f;r j F(O,I') [1'5P,+2: 7P, +3:9P,+....] du dL
00
+1

=)

It is important to realize that the above formuli are true only when
the geoid and spheroid satisfy the coudition of equality of potentlal

N 1—— cosec? Z"‘>d,u ar/. ... (5-31)

e (} P Ru.u Jnurm.l nf tho Indn,n Mnthcm Ltlc’bl bomcty Vol 20
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and coincidence of centre of gravity. The undulations of the
geoid deduced from astronomic-geodetic deflections cannot be used
in (5-31) to give Ag.

6. Practical application of the above formulas.— For
computational purposes, Stokes’ formula (5-20) may be written
as follows:—

”.Agf () siny dyr dA

7T
k jI’ jA(/JA
= om
0
=%jAgOF(\{f)d¢, .. (5-32)
0

P
where A g, = L’%gﬂ is the mean value of Ayg on a circle of
ko

radius ¥, and F () =f(¥) sin.
If we take zones of width A+, we have

N:%A\[Q)EAngl(\lr), .. (5-33)
where Ag¢, 1s the mean gravity anomaly in a zone, and
¥
F () =L, F(y)dy ___[M‘P)]v/., Vi, ¥, being the
! AN 4 AN 2
limits of the zone. Equation (5-33) may now be written as
_ [ e ..

N= 2 T Agl¢(¥) ] o (534)

The expressions for the various functions are as follows:—
f (¥) =% {cosec—;k +1—06 sin ‘!2'— — 5 cosyr
—38cos ¥ log (sm——+ sin? ——)}
F(¥) =cos ‘g— % sim}r{ssin‘g —1+cos ¥ [5+
3 loge(sin ¥ + sin® \—21')] } (5-35)
¢ (¢ {1+4sm\—g—cos¢ Gsms\b‘ sm9\1r
- g sin? 4 log, (sin ‘L +sin?—\k) }

These functions have been tabulated* by Lambert at intervals
of every degree from 0—180°. The following useful table gives the
nse of the geoid due to Ag=-001 em./sec.” in different zones.

* U. 8. Department of Commerce. Coast and Qeodetic Survey. Special Pubh
cation No, 199, 114-117,
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Elevation of Geord due to a gravity anomaly of one milligal in
each zone,

ZONE N in ft. ZONE N in ft.

0— 2 | + 1 70— 80 | — 4
2— 4 | 4+ 1 80— 90 | — 4
4— 6 | + 1 90-100 | — 3
6—8 | + 1 | 100-110 | -1
8—10 | + 1 | 110—120 0
10-=20 | + 4 | 120—-130 | + 1
20-30 | + 3 | 130—140 | + 2
30—40 | + 1 | 140—150 | + 2
40-50 | — 1 | 150=160 | + 2
50—60 | — 3 | 160—170 | + 1
60—70 | — 4 | 170—180 0

-

The figures in this table are correct to the nearest foot.

Turning now to deflections, we can write the equations (5-26)
in the following form by dividing the space round the origin by
a series of concentric zones of width A+,

n= —%’ cosec l”E{sin ¥ g\{ X 10—3} § { 103AgcosA}m (5-36)

__A_‘!"o " 3 éf_‘ —3 3 s 1 r.ar
£=—"Y0cosec z{sm\pw x 10 }m{lo Agsind } (587)

The suffix m denotes the mean value of the expression in a zone of
width A+, and

g L _CORPZ g s
gin Sy 2 sin ¥/2 3 8in Y cos 9 F5sin®yr

+3 sin®y log. { sin \; + sinﬂéﬁ)
1+ 28in y/2 oa

—3 Q:k - /< 5.38

c0s ¥ eos 2 1+ sinvy/2 (5:38)




below. The table also shows (sin VA

The values of sin 4 88-—5,f01' different values of Y are tabulated

Bf—) for the various zones.

oy
. bf . ar . 5f af . 5f ( af
s — s S — sin ¢ —- sin ¢ —- sin ¢ 2.

y | siny ("‘“’w KA vi) | v FAR
0] - oc 8| —8-9423 70| -0-1375

- o —8.2547 +0-2828
'l —460- 2206 10 —7.5671 80| +0-:7031

— 4027554 —6-6653 +1-0356
1] -3845-2902 15| —5-7635 90| +1-3681

— 2875553 ~ 53086 +1-5838
1l —229-8204 20 | —4-8537 100} +1-7994

—201-6093 —4-5560 +1-8475
L] -173.3981 25 | —4-2582 120| +1-8956

— 1447974 ~4-0220 +1-5541
v} —116-1966 30 —3-7837 140 +1-2125

— 87-5030 —3-3518 +0-7909
1| — 588094 40 | —2-9198 160| +0-3692

— 44-51%6 — 24705 +0-1846
¢l — a0-2257 50 | —2-0212 180 0-0000

— 21-6836 ~1-5475
5] - 13-1415 60 -1-0737

— 11:0419 —0-6056
8| - 8-9423 70 -0-1375

S f

the origin.

It is to be noted that the function sin

Sy

becomes infinite at

This, however, does not make the final result infinite,
since (Ag cos A4 ), and (Agsin 4 ),, in the innermost zone approach

1 , : 8 f .
- more rapidly than ( sin b—\’;) ,, approaches <. The following

procedure may he employed for the innermost zone, for which v is

small and ( sin ¥

S\ _ ¥
ST\L' )Hl, - § cosec 2 )

If s denotes the radius of this zone in linear measure, we have
s=k Y and

'f’:‘

s AgcosA)
=222 ) ds d
27} .”o( s ds dd
= 85 s (Bgeosd
2w —)AA

The expression iuside the brackets may be evaluated by taking

AA = 112 and estimating %

Ageos 4 in cach of the compartments.
)
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From the above table for sin 4 g\;;:, the following table has

been deduced, which can be used for getting the deflections at a
point from the gravity anomalies.

Mervdional deflections due to Ag cos A=1 malligal in each zone, or P.V.
deflections due to Ag sin A=1 milligal in each zone.

Limiting | Ag cos 4 | Limiting | Ag cos A |Limiting | A¢ cos 4 |Limiting | Ag cos 4
radii of or radii of or radii of or radii of or
zones |Agsin A| zones |Agsin A] zones |Agsin A] zones |Agsin 4

I—- 1 +0a6| 16-18| +0'12]| 46-506| +0-09]|90—100| —o0'06
1- +0-16 | 15-20| +0-10| 50—60| +0-06 fr00—120 | —0-14

2
2—- 5 +0-24 | 20-25 +0-08 60 - 70 +0-02 [120—140 —0-11
8 +0-12 25—30 +0-07 70 -80 —0-01 |140-160 —0-06

8-10 +0-06 1 30-40 +0-12 80—90 —0-04 1160—-180 —-0-01

As an example of the application of the preceding formulw, the
effects of the gravity anomalies in India and Europe in raising the
geoid at Jubbulpore, Lucknow, a point P with coordinates ($=25°
L =81°), Amagaon and Bangalore have been computed and are
tabulated below.

Station N as computed from
Indian anomalies European anomalies
feet feet
= 26° 55’
Lucknow §$Z20 001 —12:6 +1-6
¢ =25 00 ol .
P, {928 oo 6-0 +1-1
=23 09
Jubbulpore {%= 79 59 + 3-8 +0-9
¢ =21 22 ) _
Amagaon {L=80 98 — 4-0 +0:8
=12 58
Bangalore {% — 77 38 % +0-6
For India the width of the zones was taken as 2° and for Europe
5°.  These latter were divided into compartments 5° square.  The

effect of the European anomalies varies from 0-6 feetto 1-6 feet,
according as the station is in Southern or Northern India.

As a further interesting application of the formule, they were
used for confirming the considerable differential geoidal rise* be-
tween a point in Central India and one in Burma as evidenced by

® Survey of India, Geodetic Report, 1934, Chart XXII.
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deflections. A point 4 (¢=17°50", L="78° 50") was chosen in Central
India, Ag’s being available up to a radius of 10° around it. In Burma
it was only possible to go up to 4° for the most suitable point B with
coordinates (¢ =20°10", L=96° 10"). Taking zones of width 1° and
applying formula (5-34), the geoidal rise at 4 was found to be
—18-8 metres and at B — 0- 75 metres. The differential geoidal rise
is therefore 17 -6 metres or 58 feet, which agrees almost perfectly
with that deduced from deflections. Deflection results have also
indicated an extraordinary rise of the geoid * between Mandalay
and Victoria Point. This cannot be corroborated by the gravity
method, as data in the south of Siam is rather meagre. More data
are needed in the Bay of Bengal and the South China Sea.

Turning now to the wider problem of determining the absolute
value of N at different points of the globe, it must be mentioned
that it will be a very long time before the requisite data will be
available. Hirvonent utilized all the observed gravity data and
supplemented it by extrapolation and by theoretical considerations.
He used free-air anomalies, and chose the International spheroid as
his reference spheroid. These anomalies were only available for 32%
of the northern hemisphere and 4% of the southern. For the remain-
ing areas, for want of better assumption he assumed isostasy to be
perfect and used isostatic anomalies. Based on such meagre data,
the deduced values of N can only be taken as indicative of the orders
of magnitude rather than as true quantities. He deduced N at
62 places on the earth, the results showing a range from +85 to
— 115 metres, i.e. a total range of 200 metres. This would be a very
important result if it could be established with certainty, since ideas
about the numerical magnitude of N have been very divergent and
some people still believe that N can be of the order of 1000 metres.
As it is, Hirvonen’s values are on the average + 50 metres, and his
discussion on errors shows that their uncertainty is also of the
order of +50 metres. For numerical work, he proceeded in
a method slightly different from that mentioned above. He
divided the earth once for all into elementary areas do (squares of
5°x 5% and 10° x 10°), and estimated Ag for each of these. He
conceived N at a station to be made up of three parts:—

(%) Ng due to Ag’s within a radius of 10° from the station ;
this is called the regional part.
(77) N, due to Ag’s between 10° and 39°; this is the con-
tinental part.
(#7) N, due to Ag’s between 39° and 180°.
The stations at which he computed N were so chosen that for each
of them Ag¢’s up to Y»=30° were known.

Hunter} estimated that with 1700 stations evenly spaced over
the earth’s surface, combined with 100 stations suitably distributed

* Survey of India, Geodetic Report, Chart VI.
t Hirvonen, Veroff. des Finnischen Geéd: Institutes, No. 19, 1934,
1 Phil. T'rans. of the Royal Soc. of London, Series A, No. 743, 1935, 377—431.
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locally, the above formule would yield N with a probable error
of + 384 feet and tilt with a probable error of +0-35",

Finally it is necessary to emphasize that for computing (N, 9
and £) at a place with the help of the above formulwe, we require a
knowledge of Ag all over the globe. Thisis a desideratum at
present. A useful feature of the formule, however, is that they
enable us to find the effects of different gravimetrically surveyed
areas of the globe in producing the rise of the geoid and deflections
of the vertical at a given place. As more and more gravity data
become available their contributions can be added.

It is obvious from the formulx that if Ag is changed by a
constant amount, the derived (N, 7, £) are unaffected. In other
words, the choice of &, in the normal gravity formula is not impor-
tant for this purpose.

7. Effect of near zones.—We next proceed to answer the
question as to how accurately one can deduce N, n, £ from Ag¢’s
by a consideration of the ngarer zones only. It does not suffice to
argue that the nearer zones are all that are important, because the
table on p. 90 shows at a glance that the effects of distant zones are
by no means negligible. Indeed it is not difficult to construct an
example in which a consideration of zones up to 30° will not give
even the sign correctly. Suppose Ag=20 P, mgals, where P, is 2
zonal harmonic of degree n. Table 1 gives the mean values of these
Ag’s in different zones for n=1, 2, 3, 4 and 10. Table 2 gives the
contribution of the gravity anomaly in each zone to the final
.N. For n=1, we know that the geoidal undulation should be nil.
The working in Table 2 shows N to be 4 feet in this case. The
discrepancy is due to our zones not being small enough for the
computation of the final N. Tf, however, we had considered the
effect of zones up to 30° we would be in error by over 200.feet.
A scrutiny of the table shows that for »=2 and 3, near zones are
quite inadequate to give an idea of N. It is obvious from « prior
considerations that the greater the n, the better the approximation
yielded by the nearer zones. This is confirmed by a comparison of
the results for P, and P,. Table 3, column 1 gives N for the
distribution Ag=20 P, at a point distant 30° from the pole of P,
Column 2 gives N for Ag=20 P, at a point distant 10° from the
pole. The error made in deducing N from near zones is markedly
greater for n=4 than for n=10. Hence, in order that one may be
able to deduce N from a consideration of nearer zones alone (say
up to 30°), the Ag’s should not possess wide-spread inequalities.
They should only have harmonics of higher order, so that the effects
of remote portions tend to cancel out. As an example, if the gravity
anomalies contain the longitude term (second harmonic), near zones
will not suffice.



TABLE 1

Agn in mgals

Zonmes _
n=1|n=2|n=3 | n=4 |n=10
(e} [e] )
0— 10| +20 | +20 | +19 | +19 | +13
10— 20| +19 | +18 | +16 | +13 | — 1
20— 30 | +18 | +14 | +10 | + 5| — 4
30— 40| +16 | +10 ] + 3| — 8| + 3
40— 50 414 + 5 — 83 — 7| + 2
50— 60| +11 | — 1| — 7 7 — 3
60— 70| + 8| — 4} — 8| — 38 0
70— 80| + 5 —81t —7014+8| 4+ 38
80— 90| + 2| —9 | —2| 4+ 6| — 2
90—-100 | — 2| — 9| + 2| + 6| — 2
100—110 | — 5| — 8| + 7| + 3| + 3
110—120 | — 8 | — 4| + 8| — 3 0
120—130 | —11 | — 1| + 7)) — 7| — 3
130—140 | —14 | + 5| + 3| — 7! + 2
140—-150 | —16 | +10 ] — 3| — 3| + 3
150—160 | —18 | +14 | —10 | + 5| — 4
160—170 | —19 | +18 | —16 | +13 | — 1
170—180 | —20 | +20 | —19 | +19 | +13

95
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TABLE 2

n=10

o N O
© F O

4

N in feet

— 342
— 24-4
84

+ 4-3 |+411-6 (+197-4 |+140-7 |+ 52-5

Zones

120—130 |—
130—140
140—150
150 —-160

160—170
170—180 |—

Torats ...

TABLE 3

N in feet

N in feet

ZoNES

120—130
130—140
140-150

n=10

0-0
00
+ 2-1

n=4

ZONES

”»

=+14-7

4, total N= —27-3 feet
10’ ”»

n

For n
y»
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The same holds for the deflections, as can be seen from the
following investigation. Let the geoid be taken as the triaxial
ellipsoid

1’=k{1+€(;—) — sin® @ )+00032(L—L0) cos”e},

and let its reference spheroid be

r=k{1+e(% - sin2e)}.

The gravity anomaly is now represented by the systematic longi-

tude term
Bg=GC cos 2 ( L—L,) cos*é.

Obviously N=kC cos 2 (L—L,) cos*8,

— 8 — — 1
== %50 =Ccos 2 (L—1L,)sin 286,
—_ 8 p— ] p—
E= m—2051n2(L Ly ) cosé.

Heiskanen gets (=19 x 10—6, L,=0°. TUsing these values, we get
for Kalianpur (latitude 24° longitude 78°) n=—2"-6, £=+2"-9.
Using the table on p. 92, we see that the effect of these gravity
anomalies comprised within a radius of 15° round Kalianpur is
n=—0"-43, £=+0"-45, so that the outer zones beyond this are
responsible for over 2” in each compartment. This residual error
may be much greater in an extreme case. Thus at latitude 24°,
longitude 45° the deflection would be 7=0, £=2 Ccos 24°=7".
The assumed gravity anomalies within a radius of 15° produce a
prime vertical deflection of about +1” only, showing that the outer
zones are most important.

It should be mentioned, however, that both for vertical separa-
tion and for deviations, the relative deflections of two points not
too far from each other can be obtained from a consideration of
the near zones alone, the effect of the remote anomalies being
nearly the same for both.

A point worth mentioning is that even in the absence of
systematic error in Ag’s, the effect of outer zones is considerable in
the case of N, and a fair knowledge of Ag over the whole globe is
required before N can be determined with any degree of accuracy.
The deviations are however not so sensitive. Thus, supposing the
Tibetan plateau to be an area of gravity anomaly —0-020 gals
and to be bounded by latitudes 30°-36° and longitudes 80°-100°,
it was found by an application of the table on p. 92 that it would
produce a meridional deflection of +0”-3 and a prime vertical
deflection of +0”-4 at Kalianpur. These are surprisingly small,
considering the large anomaly assumed and its large extent.

An attempt has been made to find out the orientation of the
International and Helmert spheroids at Kalianpur from the gravity
anomalies in India. Gravity data was available up to a radius of
10° from Kalianpur, and the average values of Agcos 4 and
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Ag sin A were computed in suitably chosen zones. The deflections
with respect to Helmert’s spheroid came out to be 7y =+1"-6,
Er= +4"-2, and with respect to the International spheroid as
m=+1"-8, &= +4”+0. These differ by about 1” from the deflec-
tions adopted at Kalianpur H.S. (serial no. 240, Supplement to
Geodetic Report, Survey of India, Vol. VI). A much more reliable
value of the deflections would be obtained if Ag’s were known in
the Arabian Sea (between latitudes 12° and 20°), in the Bay of
Bengal, and in Burma, Siam and Tibet.

It can be argued that although a consideration of near zones
may not give the absolute magnitude of N correctly, it may suffice
for giving the relative changes of N for near points, because the
eftect of remote portions will be much the same. We have seen
already that the gravity anomalies in Europe produce a differential
effect of 1 ft. for points in Northern and Southern India. This is
by no means serious, but Europe is only a small portion of the earth’s
surface and it is conceivable that the differential effects of the
whole globe may be much greater.

A good use of the knowledge of A¢’s in near zones is as follows.
For obtaining N from deflections, we require such a close mesh of
astronomic—geodetic stations that the deflections at intermediate
points should be interpolable. To provide sections of the geoid in
the plains of India, recent observations have been made at intervals
of 10 to 15 miles. In mountainous regions, a much closer interval
is needed. Where, however, the deflection stations are few, and
cannot be interpolated, it is possible to supplement them by addi-
tional deflections obtained with the help of Ag’s in near zones.
The only condition required is that Ag’s should be known within
an area of such an extent round the station that the deflections due
to the remote portions at points in our limited area are linearly
interpolable. We may proceed as follows:—

Divide the earth into two parts 4, B by a circle of radius 150
to 200 miles surrounding the station. Suppose astronomic—geodetic
deflections {75, £) are known at points «a;, a,, a; ...... Compute at
these places (8n,, 66,) due to Ag’s in region A. The differences
(n—28ny, E—8E,) are due to effects of Ag’s in region B and to the
inclination of the gravity spheroid to the triangulation spheroid.
The latter quantity varies very slowly from point to point, and we
can assume it to be interpolable. We have also so chosen the
boundary of region A that deflections due to Ag’s in region B are
interpolable. Hence from the known points these differences can
be interpolated for all the points at which deflections are I'P(]llil‘e'(]-
Adding to these differences the deflections ( 87,, 8€,) due to Ag’s In
region A we have the final deflections. The method thus consists
in Arst removing the local effects as hest as possible, and then
interpolating and adding on the local effects.

This method can also be used for interpolation of ohserved
deflections even without the aid of gravity data. As a rule, obgerved
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deflections, especially in mountainous areas, are not amenable to
interpolation. For instance, we have at

Dehra Din ... 7= —32"-2,

Rajpur . mp=—42"-2,

Mussoorie ... 7=—31"-2.
Simple interpolation for Rajpur, which lies practically midway
between Dehra Dan and Mussoorie, would give an error of about
10”. We can, however, predict n at Rajpur to the nearest second
by computing the Hayford deflections (7., 0. ) due to topography
in the surrounding area, say 100 miles round the station.

We find 8n,= —15"”-15 at Dehra Dun,

—15”-08 at Mussoorie,
—24”-3 at Rajpur,

wherefrom (5—98y,) = —177-0 at Dehra Dun,

and (n—28&n,) =—16"-1 at Mussoorie.
Hence by interpolation, at Rajpur we have

(n—8np) =—16"-6
or n =—24"-3—16"-6=—40"9,

which differs from the observed value by 1”-3 only.

We will now mention how use was made of this method in a
practical case®. The problem was to obtain Laplace azimuths at
three stations Bowra, Kheri and Rakhi of a triangulation series.
Prime vertical deflections & were available at the widely separated
points Amritsar, Gugla-Bhar and Agra. Direct interpolation was
therefore inadmissible. The relative positions of the stations are
roughly shown below.

Amritsar
@
(31.37 58-72 )
74:52:23-45
o Bowra
o IKheri
o Rakhi
28:07:17-5 )
75:01:23-4
[ ]
Gugla Bhar
Agra
o
(27:09:39-93
78:01:01-89)

P.V. deflection anomalies were computed at these points from
A¢’s in the region 140 miles round cach of them. The difference
between the observed and the computed anomalies gave the effect
of distant zones at each longitude station. These effeets were
interpolated for the azimuth stations and the results added to the
(1eﬂect10n anomalies pr rcoduced by the near zones.

® Prof. Paper 28 of the burvoy Of Indm, 1 55




100

8. Undulations of the geoid.—The problem of determining
the possible magnitudes of N and N,, the elevations of the natural
and compensated geoids respectively above their reference spheroids,
has attracted considerable attention of geodesists, and is still a
live subject for research. Two methods by which the above can
be determined, namely, from gravity anomalies and plumb-line de-
flections, have already been mentioned. Both these involve actual
observations on the earth. The undulations can also be deduced
theoretically by making some assumption about the internal consti-
tution of the earth. As example of this may be mentioned
Helmert’s* computations for finding the effect of the uncompensated
continental masses in producing the warping of the geoid. He came
to the conclusion that the undulations could be of the order of
+ 1000 m. Utilizing his expansion of the lithosphere in terms of
spherical harmonics, Preyt has also estimated the possible undula-
tions for a non-isostatic earth. His work confirms Helmert’s results,
his N’s ranging from —4000 to 4 4000 feet.

The warps of the geoid have also been estimated for an isostatic
earth by Preyt and Jungi. Taking the first seven terms in Prey’s
development of the lithosphere, Jung showed that the range of N for
an isostatic earth is about 300 feet. Prey’s results also exhibit
much the same range.

As regards the determination of N from observed gravity, we
might mention the work of Helmert §, Ackerl| and Hirvonen. With
the meagre data at his disposal, Helmert used free-air anomalies and
estimated the maximum value of N to be of the order of + 100 m.
Ackerl reduced about 4000 gravity stations by Prey’s reduction, and

using Brun’s formula N= g—g Ag, obtained undulations of the order

of 2800 m. Jungy has discussed in detail the fallacy of his reasoning,
and says that he gets these large N’s due to using an incomplete
formula.

Ackerl next expressed the gravity anomalies of the earth, re-
duced according to Prey’s reduction, in spherical harmonic functions
up to terms of the 16th order $. From these anomalies he comput(?d
N’s by utilizing Stokes’ equations**. His results are set forth in
Table II, p. 265 of his paper, and show undulations of the order.of
1000 m. The largest depression comes out to be 837 m. in the Pacific

* Hoheren Geodiisie, 2, 1884, Chap. IV,
t Prey, Gerl. Beit. 36, 1932, 242-68.
1 Jung, Zeit. f. Geoph. 8, 1932, 51.

§ Helmert, Die Schwerkraft und die Massenverteilung der Erde. Encycl d.
math wiss., VI, 1, 7, Abschnitt 10.

|| Ackerl, Gerl Beit. 29, 1931, 273-335.
9 Jung, Gerl. Beit. 36, 1932, 212,
$ F. Ackerl. Das Schwerkraftfield der Erde.  Akad. wien sitz.~ber. d. mathem.
naturw, kl. (Ila), 140, 1931 und 141, 1932,
## F, Ackerl: Die Ergebnisse der Entwicklung des Schwerkraftfeldes der Erde
nach kugelfunctionen bis zur 16 ordnung. Zeit. f. geoph. 9, 1933, 273.
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Ocean at ¢ =11° L=22°  Acker] assessed the accuracy of his de-
duced N’s to be + 50 m. and affirmed that the magnitude and distri-
bution of these undulations showed that the geoid cannot be represent-
ed sufficiently accurately by a triaxial ellipsoid. Much has been
written by Hopfner in justification of these results. It is enough
to point out here that Ackerl’s results have to be rejected, his work
being vitiated by the fact that Prey’s anomalies cannot be applied
to Stokes’ formula as it stands. The necessary modification required
will be indicated later in para 10.

An attempt to determine N from the observed gravity anom-
alies, which rests on correct theory but is handicapped by dearth of
observational material, is that of Hirvonen ¥ already mentioned in
para 6. On account of lack of data, he had to resort to highly
precarious interpolations and extrapolations in estimating the
gravity anomalies. His work however brings to light that the eleva-
tions are on the average + 50 m., and refutes the possibility of
undulations of 1000 m.

9. Reductions for finding the form of the natural
geoid.—In the proof of equations (5-6), we have postulated that
by a suitable reduction all the masses external to the geoid have
been removed. One such reduction is the isostatic one, in which
the masses protruding above the geoid are abolished. The level
surface of the new mass-distribution is the compensated geoid, and
equation (5-20) gives the rise N, of this geoid above its reference
spheroid. To get the rise of the natural geoid, we have to add
the separation between the two geoids due to the mass transfers.
This is easily computed with the help of Lambert and Darling’s¥
tables for determining the form of the geoid.

Jeffreys] has shown in an elegant way, that although there
are masses outside the natural geoid, equation ( 5-20) is valid to
the first order in height of the earth above the geoid, if we use
values of gravity reduced to the natural geoid by free-air. The
reason for the propriety of free-air reduction in Stokes’ formula is
as follows :—

Imagine all the topography above the natural geoid to be
condensed on the geoid. This is called the condensation reduction,
and we will designate the level surface of the new mass distribution
as the condensed geoid. It can be easily shown that for all practical
purposes, so far as N is concerned, the natural and condensed
geoids may be considered as identical. Thus by Lambert’s tables,
the geoidal rise due to a cap of thickness 8 km., radius 100 km. and
density = 28, is 34-8 metres. If the mass of this cap be con-
sidered as a coatinfr the rise due to it amounts to

N—— —-ih—p(l—ﬁ ]L =342 metres.
2a pm

In the above formula hp=2:67 x 3=sur face density of the coating,
¢=100 km.=horizontal extent and p,=mean densify of the o'n'th

. Veroffent. des Finnischeu geodatischen Institutes, No, 10 IIolsmkl 1934,
+ U.S. Coast and Geodetic Survey, Special Pub, No. 199.
1 Gorl, Beit. z. Geophysics 38, 1932, 206-11.
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This shows how closely identical the effects of the actual and
condensed topography are, even for the unfavourable case that has
been considered. This is due to the fact that N depends more on
the actual amount of the attracting mass than on its configuration.
If, then, we can get Ag’s on the condensed geoid, these can be used
in Stokes’ equation for getting the rise of the natural geoid, since
there are no masses external to the condensed geoid.

Now, let E be a point on the earth (Fig. 12), and A4 the
corresponding point on the geoid. Let the masses inside the geoid
be designated by M, and the masses between the geoid and the
earth’s surface by m. Before condensation, gg=attraction of masses
M at F + attraction of masses m at E, while after condensation,
ga = attraction of masses M at A + attraction of condensed masses
m at 4. The condensation reduction is, therefore, g, — g5 = 2gh/k +
(attraction of condensed masses m at A — attraction of masses m

a D)

where o denotes the skin density, and the volume integral extends
throughout the mass m. The term in brackets on the right hand side
can be evaluated rigorously with the belp of Hayford’s reduction
tables, but for our purpose we may neglect the curvature of the
earth and regard the masses m between E and A as an infinite
plateau. Then this term vanishes, and we have g, =g + 2¢h/k,
which is nothing else but Jeffreys’ result that Ag,’s need only be
used. In mountainous areas, however, we may regard the topography
above 4 as an infinite plateau on which are superposed some un-
dulations. After condensation, the effect of the infinite plateaun
cancels out and we are left with the so-called “ Gelande-Reduction”
Agr. Hence a more correct expression for g, is

Agg is always positive. Its values for some of the typical
mountain stations in India are as follows:

Station Altitude Agg

feet gals

Domel 2239 ‘015

- Hayan 6084 1028
Sonamarg 9050 021
Churawan 8151 -024
Minmarg 9351 1023
Wozul Hadur 13921 019

Of course there are some mountain stations for which Agg is
less, but 0-020 gals seems a fair average value to take for uneven
topography. If, then, we neglect Aggy and obtain N from Ag,’s, we
are making a systematic error of about 20 mgals in all the moun-
tainous regions. A casual error of this amount in (say) every degree
square will not have much effect on the resulting value of N, but it
is not desirable to have such a large systematic error for all the
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mountainous regions of the globe. These remarks hold only for
determining N. If the objective is to determine the ellipticity of
the level surface, free-air gravity anomalies can be used without
objection.

The above shows that for the determination of N for practical
purposes, it is simplest to use condensation reduction. The use of
isostatic reduction entails an extra step, namely, the computation
of the deformation of the natural geoid due to mass displacements.
The relative merits of these two reductions for determining N have
been considered by the author* in a paper entitled “ Gravity reduc-
tions and the figure of the earth”. 'W. D. Lambertt has also
contributed several articles on the subject which are interesting.

Another point of view about the determination of N has been put
forward by Hopfner | in various articles. He vigorously denounces
all other reductions except Prey’s, and asserts that this is the only
reduction which can be used for determining the geoidal rise. In
this reduction the earth is left as it is, and values of ¢ are deduced
on the natural geoid as if gravity observations were made there. It
is obvious that to make use of Preys’ anomalies we have to extend
formula (5-20), so as to be applicable to the case when there are
masses external to the geoid. The formula can be modified for
Bouguer anomalies as well.

10. Extension of Stokes’ theorem.—We will now consider
method (b) mentioned in para 4. In this the mass distribution of
the earth is not interfered with, and the problem is to get a value of
the potential at a point inside the attracting masses. The appropriate
formulee have been worked out by Malikin § and Lambert. || The
integral equation between N and Ag, when there are some masses
external to the geoid, is

gN—21, = ?ljj Agdw n 1 ”’_3{ gNdw

7 27 2k *

-

- —(?PG(JW ’il)+ 1 ” (kAg + 3T.) F () do,
P 3 4

where U, denotes the potential of the masses between the geoid and the
earth. Prey’s anomalies can appropriately be used in this formula.
We see that as in the case of no external masses, a knowledge of the
distribution of density inside the geoid is not required. But to get
U.and Ag it is essential to know the precise arrangement of masses
external to the geoid. Hence if there are masses inside and outside a
level surface, its form cannot be determined from a mere knowledge
of the values of gravity on it. Tt is essential to know the external
masses as well. The situation is thevefore precisely the same as
when there are no external masses.

* Gulatee, Gorl. Reit. z. Geoph. 53, 1938, 33216,
+ Lambert, Bull. Geod. No, -+, 1931, 26-33

1 derl. Beit. z. Geoph, 38, 1933, 309-20,

§ derl Beit, 2 Geoph. 4B5. 1935, 133147,

I| Gerl, Beit, z. Geoph, 48, 1937, 199-209.



104

The rigid computation of Prey’s anomaly is by no means less
troublesome or less inaccurate than that of Hayford’s anomaly, and
there is no particular advantage in using it for the computation
of N. It might however be put to the following two uses:—

If 8 is the natural geoid, and gp the value of gravity on it (due
to actual topography), then ” gpdS = 47 M, where M is the sum
of the masses inside the geoid.

Again if V| denotes the potential due to the internal masses, then

_ 1 ([, d8 | o*[((dr
=gl T a1

Hence if gp is known, we can obtain the total masses inside the
geoid as well as their potential without knowing the internal law
of density. From the point of view of the geoidal rise, this reduction
has received exaggerated importance at Hopfner’s hands.

11. Summary.—In this chapter, the subject of deriving the
undulations of the geoid and plumb-line deflections from the gravity
anomalies is considered from both the theoretical and practical
aspects. It is explained that Stokes’ formula can only be used for
certain reductions, and that it has to be suitably modified before it
can be applied to Bouguer and Prey’s reductions.

Examples have been given to illustrate the gravity method ot
determining (N, 7, £) from the available gravity data. Besides
these, a general idea is given of the maximum possible separation
of the geoid from its reference surface.



CuaprrER VI

CHOICE OF A REFERENCE SURFACE FOR
GRAVITY WORK

1. Reference surface.—The earth’s surface is very irreg-
ular and cannot be expressed by a simple mathematical formula.
The same holds for the natural geoid, and in dealing with problems
connected with the figure of the earth, it is therefore customary to
define the geoid with respect to some suitably chosen reference
surface.

Any surface may be taken as a reference surface, but it is ad-
vantageous if it be so chosen as to fit the geoid reasonably well. It
may be determined from physical considerations, or may be defined
geometrically. In triangulation the latitudes and longitudes are
computed on a reference surface which is a true spheroid. We
shall see presently that considerations which determine the reference
surface for gravity work are quite different from those necessary
in the case of triangulation and arc measurements.

2. Nearly spherical surface.—For a proper understanding
of the various definitions of the reference swrfaces in gravity work
it is essential to know the interpretation of the various harmonic
terms in the equation of a nearly spherical level surface.

Let the geoid be
r=a (1+Y,+ Y, + Y, + Y+ ..ccovvinnne ... ) ... (6:1)
where Y, is a constant,
Y, =A,sin 8+ (A4, cos L+ By, sin L) cos 6,

Y, = ‘%ﬂ (3 sin*@—1)+ (4, cos L+ B, sin L)% sin 26

+ (4, cos 2 L+ By, sin 2 L) 3 cos¥d,
and so on.
8, L are the geocentric latitude and longitude respectively of a point
on the surface.
The volume of this surface is
(1+Y,)*+

4 ad
3

3
LA (1+Y,)3 it A2, A7 cte. can be neglected.

-

V=

A& AP+ A2 BE) 4 e

Obviously, the radius of a sphere of equal volume is k=a (14 Y)).
As an example, the equation of a spheroid, neglecting terms of
order €, is

r=a( 1- A{l,-e—gel'g). o (642)

)
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We have kza( 1— %e ),Y0= — %e and 4,= — %e.

For a true spheroid, the value of & correct to the €* term is given by
the expression

_ _1 1, 13 4 205,
k—“(l 375 Ti05° T 504° )

We see from the above that the surface r=%k (1+ Y,+ Y;+...),
the spheroid »r=Fk [ 1+¢(4—sin’d)] and the sphere »=£% have the
same mass to a high degree of approximation if

Y,=¢ (%— sin%d )+ (A21 cos L+ By, sin L )—g sin 20+ ...

and if terms of order ¢, € etc. are neglected.

Again, the centre of gravity of mass or volume of surface (6-1),
assuming it to be homogeneous, is given by

—_|[+am

M

x

4ot 9 2 9
=ad+ 5 4, ( AP+ A+ B ) +0 (aAﬁ.)

= ad,, terms a4® etc. being negligible ;
similarly z = ad,;, and y= aB,,.

If, however, the surface be considered as a sphere of radius a
and density p., overlain by a coating ap (Y, + Y, +...), we have

w=a11n'

. .
h—]
P P Pm

If the origin be chosen at the centre of gravity of volume of
the surface, the equation of the surface becomes

r=k(1+Y,+Y,+...) e (6°3)

This is the reason why the Y; term is absent from equation (6-2)
which is the equation of a spheroid referred to its centre as origin.

The Y, term is very important as it enables the ellipticity of a
level surface to be defined. We know that r=%k (1—3%¢P,) isa
spheroid of ellipticity €, and

r=k[]—§€Pg+ ;—WCOSQQCOSZ(L—LO)] . (6:4)

is an ellipsoid, the mean ellipticity of whose meridians is € and the
ellipticity of whose equator is 7. The actual ellipticities of the
ellipsoid (6:4) in the planes »z and yz are e—n/2 and €+7/2
This shows that the last term in equation ( 6-4 ) contributes to the
meridional ellipticity, but averages out to zero in the mean merid-
ional ellipticity.
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Equation (6-3) may be written as

=k { 1— —?))—eP2+%(AmcosL+Bﬂ sinL) sin 26

+3(A22c032L + B,y sin 2L)00523+ =z Y} .. (6°5)

=

¢ may be defined as the mean meridional ellipticity of the geoid.
It must be noted, however, that this definition can only hold under
certain reservations because there are certain other terms which
contribute to the meridional ellipticity. As an example, the coefti-
ctent 4, in the fourth harmonic

= %(34 sin'd — 30 sin®d + o) + ( A, cos L+ B, sin I )

X 7g-cos 6 ( 7 sin3 6 — 3 sin 0) S

also adds to the ellipticity of the geoid. It is assumed that such
terms are of O (€*).

The coeflicients A,,, By, detine the ellipticity » of the equator.
Here again, there will be terms in Y, Y; ete. which contribute to
this ellipticity, but as mentioned in chapter 11, 7 has so far been
determined by considering only the 4, and B,, terms. This equato-
rial ellipticity is very small and has not been determined reliably.

We will next consider the significance of the harmonic terms
cos L cos 28, sin Iisin 268. The expression § (4, cos I + By, sin L) x
sin 2 @ does not contribute to either the meridional or equatorial
ellipticity since it vanishes both for =0 and §=90°. The equation

1
r==Fk {1— %e Py+ 97 cos® @ cos 2L

3 . .
+ "(Am cos L + B, sin L) sin 2(9} ... (6-6)

2
represents an ellipsoid referred to axes which are not the prineipal
axes. To see this, consider for simplicity the spheroid obtained by
putting 7=0 in the above. Let its principal axes be OC,, Oz, Oy,
(Fig. 13) where the plane €Oz passes through Greenwich. If S is
any point on the spheroid such that / C,08 = 90—4, its equation
referred to these axes is

'r=a(1—esin20)=k(1—7§eP2) . (6:7)

Now choose a new set of rectangular axes 0C, Ox’ Oy’, where OC
is defined with respect to OC, (the minor axis) by the angular co-
ordinates (0,, I,), L, being reckoned from the plane through C,
and Greenwich. We have

sind’ =sinf siné,, + cosf cosb, cos (L —1I,)
= sinf + (7‘_; —8, )cost cos (L— L(,), since 8, = :

-
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The equation of the spheroid referred to the new axes is
r=a(l—esin*@")

=a { 1—esin®@—e¢ (%—Go)sin ‘Mcos(L—Lo)}
2
" { 1—ZeP, — (%—00)sin26’cos(L—L0)} (68)

Comparing this with equation (6-6), we have

%AM = —¢ (»721 -0, )cos L,
3 T (6-9)
?Bm = —¢€ (—2——00 )sin L,
Henee cot I, = g‘ﬂ, (6-10)
21
1 8 .
721_00= e 9 Vv AxE+ By ee. {(6-11)

The above shows that the coefficients of the harmonies cos I sin26
and sin L sin 2 8 depend on the deviation of the rotation axis from
the axis of symmetry*.

In the case of the earth, 6, I, can be deduced by utilizing
Prey’st results. He has expressed the lithosphere in a series of
spherical harmonics up to terms of the 16th ovder. His sevies 4
gives the undulations of the lithosphere from mean sea-level, and
series B is such that over the oceans it gives the same results as 4,
but on land it gives zero values. The values of the coefficients of
the various terms in the two series are tabulated in Table VII of the
above publication by Prey.

Substituting the values A, and B,, in equations (6-10) and
(6-11), we obtain

% "90.2.10

and L,=130°W.

This displacement of 1° of the axis of rotation from the minor axis
ig excessive. If topography were compensated to a depth of 100 km.,
Mader has estimated that this displacement would be of the order of
1’ of arc. Even a displacement of 1’ is excessive because results of
the variation of latitude point to a coincidence of the two axes to
within a fraction of a second of arc. Hence there must he some
sort of compensation which must be neutralizing the above displace-
ment.

* Lambert, Bull. Geod., No. 26, 1930, 112.

t+ Abhandlungen der Koniglichen Gescllachaft der Wisgenschaften zu Gobtin®
gen, Neue Folge Bd, xi1, 1, Berlin 1922,



109

3. Definitions of a reference surface.—We have already
seen in chap. 1 how Helmert* used the level spheroid as a reference
surface to the geoid. The potential on the geoid is

=ﬂ{ 1— 3K(si1126’— 1)+ 3 BTACOSQG cos 2 L }
r

9,2 3 4 M®
+f Y, + Y, + ... + 1 w?+? cos® 0
,r/l 1«5 2

and on the level spheroid is U= W,, where

U= LM{ 1+ S (1—38sin*f)-+
,

O
— cos™ 0
2 4?

o'
2fM
’ +£(sin'0—%sin‘39+ ;:5)}
By equation (1-28), the formula for normal gravity on the above
level spheroid is
, ’ 5 s 1 19¢\ . o 9 gyl
g==G. 91+ (~2 m —e + Ge -3 eMm — 78)s1n"0——('76“—38)3111"6’ .
This formula serves as a basis from which to reckon gravity
anomalies.

The following is a move illustrative treatment for showing the
analytical relations between the geoid and its reference surface in
oravity work. For the formule ot the preceding chapter (giving
the undulations of the geoid from the gravity anomalies) to be
valid, the reference surface has to satisfy certain conditions.
Choosing the origin at the centre of gravity of the geoid, its
equation may be written as

’l':’ﬁ(l'i"YQ"l’Yg'*_ ...... )-
We have seen that with the reference surface
r=k(1-3ePy),

equations (5-6) are accurate to the small quantities of ovder € pro-
. . . . Y, 2 .
vided G is the same for both the surfaces. Sinece (f = FYo_ S wh,
(4 9

this condition ensurves that the masses of the two surfaces are equal.
Obviously the centres of gravity of the two surfaces are also

identical.

To obtain a general result, suppose the equation of the geoid
is written in the form

r=k(1—e3Y,—, 2 Z,). .. (6-12)
Then by chap. v, para 3, Stokes’ equations (5-6) ave satistied covvect
to terms of 0 (€*) it the reference surface be chosen as
r=k(1—eXY,).

By our definition of the ellipticity of the geoid, this choice ensures
that the mean meridional ellipticity is the same for both the
surfaces, the difference de in their ellipticities being of 0(e,) =0(€?).

* Hoheren Geodiisio, 2, 1884, 89,
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If, then, the geoid is
r=k { 1— %GP2+G'21),L }, .. (6-13)

Stokes’ equations would be satisfied if the reference surface be
chosen as any surface of the family

r=k(l1—3e¢P,+€3Zw,), .. (6:14)
provided € is of 0 (¢*). As an example, let the geoid be

1:a{1—esm 0—56 sin® @ cos® 6 + y sin® €cos20} (6-15)
In terms of spherical harmonics, it can be written as

o 5 93, 8 12,
~=k[1—— P3+Po( _ -)—P - L2 ) :
' g1 X T 63 (d)x 35 ¢ ] (6-16)

Comparing with (6-13), we have

. 9 93, 812,
€3 u=P(2y—232\_p - .
i "(21" 63 ) (307‘ 35 )

If we choose as our reference surface the spheroid

r=a<l—esingo9— gezsing&cosgﬂ), ... (6:17)
we have € S, = 2_3eP+1? er,.
63 3

Gravity on (6-16) is
g==G [1»# <5m—-2€ 04 e D 25 2y 2 X)P2

3 63 9 18 21
12 4 o, 24

—(Fme— ¢+ x )P

(7me €+ 3 x) !

and on (6-17) is
Y%=G|1+ sm—2e 6 5o 25.0\p 12 et e P,
’ 3 ? 5

63 9 18 7
the mean value G of gravity being the same on both the surfaces
(cf. chap. 1, para G ).
From these equations, we see that

2 8
N=Fk (—yP,— P
(21X 2 3,X )

pg=g (2 yp— 2% p
g (21" T ")

This confirms that Stokes’ equations are valid for our reference
surface.

In view of what has been said in para 2, it is obvious that the
reference surface has the same volume as the geoid. Assuming the
same mean density for the two surfaces, then masses 1nust also be
identical. When the geoid is reckoned as the equipotential of &
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reference surface, having a coating of total mass zero on it, the
condition which the reference surface has to satisfy in order that
Stokes’ equations should hold is that it should have the same
potential as the geoid (¢f. chap. v, para 8). It appears, then,
that to the order of accuracy to which we are working, the reference
surface is so deformed by the superposition of coating on it, that
the new level surface having the same potential will also have its
volume equal to it. This convenient property only holds when
the mass displacements are small. In particular, it is true for the
important case of a massless coating on a sphere. It implies that
the N’s found by Stokes’ method satisty the condition

Ndw = 0.

It is important to realize the significance of the above condition
which the reference surface has to satisfy. Michailov¥* has tested
the accuracy of Stokes’ quadrature formula by numerical examples
with simple models. He starts with the International spheroid and
finds its separation from a reference sphere of equal volume.
The result by Stokes’ formula is out by 26 metres which is of
0 (ae*) =70 metres (and at first sight this shows that our formula
is accurate to 0 (e) only ). Michailov appears to be satisfied that
Stokes’ formula has given N to this accuracy. Actually, however,
it gives N to 0 («e®) ie., | metre or so, provided the reference
surface is properly chosen. Michailov’s reference sphere does not
satisfy the condition that it has the same mean meridional ellipticity
as the geoid.

Since Ag=G3 (n—1) u,, we have

” Ag do=0. ... (6:18)

The area of the zone Y, — Y4y is 27 & (cos Y, —cos Yy ). IfA,g
donotes the mean value of gravity in this zone, equation (6-18)
may be written as

2 2 ]‘;2 Am{/ (COS '\If},—COS ‘\!f/H-l) =0.

Hence the reference surface also satisfies the condition that the mean
value of gravity on it is the same as on the geoid.

4. Relation between the centres of gravity of the
geoid and its reference spheroidt.—A reference spheroid is
the equipotential of certain masses within it. We have seen that
these masses cannot be homogeneous. The geoid is the equipoten-
tial of the spheroid with a coating of total mass zero superposed
on it. Both these surfaces being heterogeneous, the centres of
gravity of mass and volume are unot identical. It is important to
realize, however, that for a nearly spherical equipotential surface,
the masses have to he so arranged that the two centres of gravity
are coincident. To sec this, let (), O, denote the centres of gravity
of mass and volume respectively. We have alrcady seen that if

* Verh. der 8-ten Tagung der Balt. Geodiit, Komission, elsinki 1936, 207,
t i.e,, Centres of gravity of the matter contained within these two surfaces.
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the origin be chosen at 0,, the expression for the potential at an
exte1nal point is given by (1-24). Next, with respect to 0, as
origin, the equation of the nearly sphencal level surface may be
written as

r=k(1+u,+u;+-c-+-- )»

and we have seen in chap. 1, para 6 that its external potential is

. 1 Bu o’k (1 .
W=fY, (7 + 3 24 -)— oy (—3-4— sin®@ )...(6-19)
Equations (1-24) and (6-19) are identical ; hence the two centres
of gravity are coincident. It is worth while calling attention to
the fact that this property only holds for a level surface which has
no masses external to it. In other words, it holds for the com-
pensated geoid but not for the natural geoid. In deriving the
quadlatme formula between N and Ay, the equatlons of the fre01d
and its reference spheroid are so chosen that the term w, is 'Lbsent
from both. In other words, the centres of gravity of the masses
iside them (or of their volumes) are identical.

Suppose, however, we want to find ¢ on the level surface
=k (14+u+u+---+) ... (6-20)
It is not difficult to see that the u, term will be missing from the
expression for g. Thus, let the potential of the attracting matter be
Y, ©

V = ‘{’ + 2 o
If (6-20) is to be an equipotential, we must have

W=V+ 3} 0" cos’d=constant on it,

2, 5 41 -
or PV—fY(l E?l_+k_;°°~_|_....)_w (~—s1n~¢9)
)

from which we get
)|'=V.:

SW
9= _( or
=4
='% [l —2uy+uy+ 2u, 4 o — ;— 0’k (% —singﬁ.)]
The term in #, disappears in the final expression for g. In other

words, the values of gravity at corresponding points on the two
surfaces

=a (1+Y,+ Y+ Y, + ")
and r=a (14 Y, + Y+ v - )
are identical.

The same holds for the gravity anomaly Ay which is the differ-
ence of gravity on the two surfaces. To see this, consider a sphere
r=a and call it surface I. Puta coating a (Y, + Y+ Y+ )
on it, and we get a new level surface II. The potentla] due to
this coating is

—47Tfa02 ( )“H
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If g denotes gravity on II, and v, on I, we have

3 1 1
—471')‘0'[: o+ 3Y+ Y, + - ]—877/0'[ 0+3Y1+5Y+ :|

As before, the term in Y, becomes zero automatically. If, then, we
are given that Ag _] Ay ug+Ag ug+ 0000 and we want to determine
N= B, wy+ By uy+ - , we see that all the terms are determin-
able except B;,.  Other considerations are needed for fixing this
term. The above property depends on the law of attraction and is
independent of the internal constitution of the body.

In the quadrature formula N = Ji_ JJ A¢g f4) dw, a term of the
D7

type dy+ dyu; in Ag has no effect on .N. Hence for deducing the un-
dulations of the geoid from A¢’s, the position of the centre of the
reference surface has to be defined beforehand ; it cannot be derived
from gravity observations. The simplest course is to make the
two centres of gravity coineide. In the converse case, when we
know the orientation of the reference surface and its separation
N=B; u;+ B, uy+ ...... from the geoid, Ag can he easily determined
except that one constant G or M has to be found by some other
method. Although N contains the u, term, we have seen that this
term will be missing from Ag. Hence the physical and dynamical
definition of the reference surface of the geoid, which involves the
idea of the equality of the potential, ensures the coincidence of the
centres of gravity of the two surfaces.

To carry the discussion a bit further, suppose we choose the
centre of gravity of volume of the earth as origin. Its equation
may be written as r=k (1+Y,+Y;+...+Y,+...). ... (6.21)

Regarding this as a sphere » —L with mean density p,, on which a
coating of surface density kp = Y, has been superposed, we see that

l:‘)

the equation of the level surface which has the same potential as the

sphere r=% is
p=k + kP (1_3+5+ ...... ) . (6-22)

Pu VD 7

The first harmonic term being absent, the centre of gravity of
this level surface coincides with that of the earth. This coincidence
must be to first order terms only, because we have seen in para 2
that strictly speaking, terms Y,* ete. enter in the expression for
the centre of gravity of a surface. From the foregoing discussion
we see that if an uncompensated coating & 2 Y, is superposed on a

sphere »=1%, which is a level surface of cert_aln attracting masses
within it, the new level surface with the same potential will have
the same centre of gravity as the sphere.
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We will now consider the relations between the centres of
gravity of the earth, the natural geoid and the compensated geoid.
Let E be the centre of gravity of mass of the earth, G of the
geoid, and C that of the compensated geoid (Fig. 14). Laborious
computations are needed for obtaining the numerical estimates of
the relative distances between these points.

Prey’s series for the lithosphere gives
a A, =1129-8™%  q B =0664- 4™, a Ay =1263 8™,
and for the hydrosphere
a A;,;=1005-5™" g B, =563 8" q 4, =1112-3mete,
where 4,,, By;, 4, are constant coefficients in the expression for Y.

Based on the above data, Lambert* has tabulated the displacements
of the centres of gravity due to superposition of continents and
oceans. If (r, ¢, L) denote the amount and direction of the dis-

placement of the centre of gravity, then for no compensation we
have

Lambert—Prey Mader
r=G25metres g7 metres
¢=43° 57’ N. 49°-6 N.
L=31° 01’ E. 34°-2 E,
and for compensation at the depth of 100 km.
7= 4 - Querres 5 - gmetres
$=43° 57 N. 49°-2 N.
L=31° 01’ E. 34°+1 E.

It is important to notice that by isostatic compensation the
displacement of the centre of gravity is reduced to 15 feet. Inour
figure, therefore, G C=15 feet. Of course if we assume some
different type of compensation we will get a different answer.
Indeed by assuming suitable subterranean mass anomalies, we can
make the difference of 625 metres in the centres of gravity of the
normal and final earth to disappear.

When the mass displacement is such that the centre of gravity
is displaced by an appreciable amount, Stokes’ formula would still
hold, provided the new level surface be shifted so that the centre of
gravity of the new mass configuration is made to coincide with
that of the original level surtface.

5. Mean load level.—W. D. Lambertt has introduced yet
another reference surface, which he designates as the mean load
level. Imagine the oceans of the earth to be solidified into matter
of normal crustal density. Take a spherotdal equipotential having
the same volume as the modified earth. Assuming the earth’s
surface to be 70-8% ocean and 29-2% land, and taking the mean
depth of the oceans to be 3800 metres and that of the land to be
840 metres, the mean load level surface comes out to be about
4600 feet below the geoid.

* Bull, Geod., No. 26, 1930, 111.
+ Bull. Geod., No. 26, 1930. 21.
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If the topography be reckoned from this surface, then under
certain conditions, the deformation of the geoid due to the intro-
duction of topography and its compensation is given by the simple
formula

3 p T
=— 2., —H
R
where H denotes the height of the topography reckoned above the
mean load level, 7 the depth of compensation and p, p,, the crustal
and mean densities of the earth respectively.

Darling® has tested the accuracy of this approximate formula
by considering 31 stations, of which 22 are on land and 9 in the
sea, located in the Atlantic, Pacific and the Arctic oceans and also
in the waters of the E. Indies. The average discrepancy trom the
true value came out to be 5 feet and the greatest discrepancy
12 feet.

It should be mentioned, however, that now we can get » more
precisely with the help of Lambert’st tables which are based on
more rigorous formule.

6. Earth spheroid and reference spheroid.—It is
important to realize the difference between spheroids used in gravity
work and those used for computing triangulation and deflections.
A gravity spheroid is unique and may be termed the °Earth
spheroid.” As we have seen, it has the same centre of gravity and
mass as the matter within the geoid. The reference surface in
triangulation has to be a true spheroid, which may be defined in
two alternative ways by seven constants as below:

(a) (2, Yo, 25), the co-ordinates of its centre.

(B, v ), the direction cosines of its minor axis.
(a, €), its semi-major axis and ellipticity.

(b) &, the angle between the spherical and geoidal normals
at an arbitrarily chosen point, known as the geodetic
datum.

4,, the angle which the plane containing the above two
normals makes with the geoidal meridian

N,, the vertical separation between the spheroid and the
geoid at the datum.

(B, v, @, €) as before.
It is easy to show that the quantities (¢, 4,, N,) fix the
co-ordinates of the centre of the spheroid uniquely. In triangula-
tion, the centre (ay, y,, %,) 1s not defined to be at the earth’s centre
of gravity. It is defined by assigning arbitrary values to é},, A,, N,
The angular co-ordinates B3, vy are speclﬁed by defining the minor axis
of the sphe1 oid to be parallel to the earth’s axis of rotation.
This condition enables Laplace’s equation to be utilized.

* Bull Geod.. No. 44. 1934,
t U. 8. Coast and Geodetic Survey, Sp. Publication No. 199.
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In determining the figure of the earth by triangulation in
different countries, one is handicapped by the fact that the datums
are unconnected. Kach triangulation is computed on a differently
orientated spheroid, which is unsatisfactory. There is no immediate
prospect of connecting the different triangulations of the globe,
as the oceans present a serious difficulty. The best that one can
do is to derive the dimensions of the best fitting spheroid from
each isolated triangulated region, and combine the various results
by assigning suitable weights.

Hence it is much more practicable to connect gravity data of
different countries rather than their triangulations. Apart from this,
the triangulations of different countries are on different spheroids,
and the problem of conversion of a triangulation series from one
spheroid to another is much more complicated than that of
conversion of a gravity formula. The determination of the
figure of the earth from the gravity anomalies, therefore, possesses
a more ahsolute character. When, however, enough gravity data
are available on the globe, it will be possible to place each
astronomic-geodetic net on its reference spheroid in terms of the
Earth spheroid. For each isolated triangulation net, if at one point
(N, n, &) are determined by Stokes’ theorem, the net can be
computed in terms of the reference spheroid with the origin at the
earth’s centre of gravity.

In India,ethe International spheroid is orientated by malking it
fit the compensated geoid best. Due to dearth of gravity data, it is
not possible to get reliable values of (N, 7, £) at the datum from
Ag’s by the formule of chapter v. If Hirvonen’s results could be
accepted, one could at least determine its separation from the geoid
at Kalianpur in International terms. Hirvonen’s results seem to
indicate that the International spheroid, as orientated in India,
has to be depressed through 200 feet or so.

7. Summary.—In this chapter the various types of reference
surfaces are defined. It is pointed out that it is necessary to distin-
guish a triangulation reference spheroid from a gravity one, even if
their dimensions are identical. The geoidal profiles ordinarily
determined from gravity data are not closely linked with those from
deflection data, as the orientation of the reference spheroid may be
quite different in the two cases. They can only be anchored to each
other satisfactorily, provided (N, 5, £) are derived at one point of
the triangulation net by the help of Stokes’ theorem.

G&.B.—P.0.—J.8. 243—21-12-39—376 books.
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