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I N T R O D U C T I O N  

The last few years have seen a remarkable activity in gravity 
observat~ion~ in different part,s of the globe, and with the advent of 
llew instruments of improved patterns there is every reason to look 
forwarcl to a rapid accumulation of further observational material. 
Side by sicle, there has beell a considel.able output of research on the 
theoretical aspects. The literature on the subject is however 
scattered about in different books and periodicals which are often 
inaccessible. Apart from this, i t  is so volumiilous tha t  i t  is possible 
only for a comparatively few people to study each paper critically. 
Some of the problems are still a, subject of considerable difference 
of opinion among expeists, and i t  appears to be pertinent to take 
stock of what has been done so far. 

The p u r ~ o s e  of this l)ullication is to yrovide an  introductioil to  
the funclament,al problems of higher gravity, explaining the lines of 
investigations developed in recent times, and the pract'ical applica- 
tions of the various forinulx. It is hoped that this paper will be 
useful to a wide circle of readers, including the experts. 

Chapter I deals with t,he various gravity formula: with brief 
proofs. 1 h e  expa~lsions of the various terms in t,he gravity formulae 
have been carried out in power series most,ly with a view to their 
application to the case of the earth. The classical part  has been 
dealt with exte~lsively by Helmert in his Hijheren Geod6sie Vol. 11, 
but the notation employed there is unfamiliar to  English-reading 
people, a i d  the tjreatment is often confusing. The moclern develop- 
ments are scatt'ered about in a number of foreign periodicals some of 
which are not readily available. 

The practical derivntion of the empirical gravity forn~ul,l: is 
reviewed in Chap. 11. I11 particular, the intricate problem of t,he 
derivation of the ellipticity of the equator is discussed. 

Chapter I11 gives an accouilt of Clairaut's, Darwin's and de 
Sitter's theory of the figure of the earth. Clairaut gives a differen- 
tial equation between the ellipticities of t,he internal level surfaces 
of the earth and the distributioil of density, assuming tha t  there is 
hydrostatic equilibrium inside. Actually the material of the earth 
is nearly in hydrostatic equilibrium below the depth of compensa- 
tion which is of the order of 50 km. Clairaut's equation is not very 
tractable to solution and has exercised the ingenuity of tlhe early 
mathematicians, who had to nlalre certain ad ILOC assumptions about 

variations of densit'y ill the cart,h's interior. These laws of 
dellsit'y have now beell de f i~~ i t e ly  disproved and co~isequellt.ly t,hese 
solut,ions have been purposely sl<ippcd over in this book ns being 
of purely historicnl ilitcrest,. A solut,ion 1)asetl on our   nod ern con- 
cept of cleusit~y tli~tribut~iou insicle t,hc cai~t~h as cvidcnced by seismo- 
logical research is however ii~cluclcil. The niast rclinble ~nct,llod of 
determining the ellipticity of the geoid is outtlined. 



Gravity anomalies fouilcled on the various theories of compen- 
sation can be put to  several uses, one of them being the determina- 
tion of the inequalities of density in the crust. This is dealt with 
in Chapter IV. It is pointc~cl out t'hat the problcm has not a unique 
solution even if no account is taken of the stresses in the earth's 
crust. Some useful formul~e have also beell incorporatecl for obtain- 
ing the iluinerical estimates of the mass anomalies from the gravity 
profiles. The part  played by gravity data in elucidating tthe tectonic 
folding in the varions yewions of t l ~ e  globe is also discussed. Gravity P 
anomalies provide a direct rneasure of the excess or underloacl. 
Regions of very large positive ~~nomulic~s, 1)eing areas of overload, 
should be expected to be coi~tinuously sil~lting, which is by no means 
always the case. A 11otal)le cxceptioll is t'hat of the Island of 
Cyprus, which has risen in spite of being a region of large posit.ive 
anomalies. Again, the upheaval of land ill Fennoscandia does not, 
bear a close correlation with the gravity anomalies. 

Another use of the gravity anomalies is the cletermination of 
the form of the geoid, a11t1 the deflection of the ]>luinb-line. The 
necessary forinulre ancl their practical applications are cliscussed ill 
Chapter V. 

Chapter VI  deals with the question of the choice of a reference 
figure. The reference spheroids in vogue in geodetic work are so 
diverse that  i t  is indispensable to  have a clear coilceptioil of the 
conclitioils they have to satisfy before we can make a proper use of 
them. The problem of the liillrillg up of gravity and cleflection data 
is also elucidatecl. 

For convenience, the clingrams have all been put together a t  the 
end of the boob in a clouhle page so t,hat they can be opened clear of 
the text. A list of symbols is also given for easy reference. 

Lastly, I would like to acknowledge my inclebt~edness to Mr. 
A. N. Ramanathan, M.A. for seeing the hook through the press and 
for verifying some of the formulz. 



LIST OF SYMBOLS 

8 =geocentric latitude 
$ =geographical latitude 
L = loilgitucle reckoned positive east of Greenwich 

Lo =longitude of one eilcl of the major axis of a triaxial 
ellipsoid 

Y18, "'' " ' ) = Laplace's functions of order a 
?/I, ) Vl, , H,t 

P,, =Legendre fuilction of degree 1~ 

p =sin 6 ( uilless otherwise statecl ) 
k =radius of a sphere having the same voluine as a iiearly 

spherical surface 
(1, h, c =principal senli-axes of a triaxial ellipsoid 

il.1 =total attracting mass of  a body 
e =(a -c ) / c i  
q = ( a - b ) / a  
p = voluine density 
a =surface density 
f =gravitational constant 
y =gravity a t  a point 

yo, g b ,  yc =gravity a t  the extremities of the prirlcipal axes of a 
triaxial ellipsoicl 

Q =mean value of gravity talcen over a whole surface 
12' =mean ecluatorial gravity on a triaxial ellipsoid 

Q, =equatorial value of gravity on a spheroid 
G, =gravity a t  the extremity of t'he minor axis of a 

spheroicl 
yo =normal value of gravity 
o =angular velocity of a rotating bocly 
rn =oza/G, 

m' = ozk/G 
mN =o2kLfM 

A, B, (' =PI-incipml inolnc~lts of inertin of a hocly 
N =height of the coinpcnsatetl g~oicl above the reference 

spheroid 
N, =height of the natural geoid above the compensated 

geoicl 
Ag = g - yo = conventional gravity ailomsly 



AgA = Free-air anomaly 

AgB = Bouguer anomaly 
Agc = Isostatic anomaly 

AqcH =Hayford ailomaly with respect to the Helmert's 
formula 

Ago = Hayford anomaly with respect to the International 
formula 

7 =depth of compensation 
q = mericlioilal deflection ( It has beell usecl in this sense 

in chapters v ancl vr oilly ailcl shoulcl not be coil- 
fusecl with t'he equatorial ellipticity q )  

5 =prime vertical deflection 
0 ( c3 ) =residual containing terms in c%ancl higher orders. 

By the statement ' correct to 0 ( P )' is implied that 
terms of order higher than @have been neglected. 

111 the text, by true or natural geoicl is meailt the geoid arrived 
a t  from deflections or gravity, when the actual topography is not 
interferecl with. By compensatecl geoicl is meant the geoid declucecl 
on the basis of compeilsatecl topography. The difference between 
the compeilsatecl and natul.al geoicls is, therefore, the defor~natioil 
produced by the compensated topography. 



THEORETICAL BASIS OF GRAVITY FORMULB 

1. Definitions.-In the theory of the gravity field of the 
earth, the following surfaces are generally involvecl: true spheroid, 
level spheroicl, triaxial ellipsoid and nearly spherical level surface. 
The term 'level spheroicl ' (Nivecluspl~ii~oitl) was coined by Helmert, 
and denotes a surface whose radius vector differs from tha t  of a 
true spheroid by 10 or 15  feet (see para 6 ). It will be shown later 
( chapter 111 ) tha t  a homoge~leous triaxial ellipsoid is not a possible 
form of equilibrium of a rotating fluid. If the earth were homo- 
geneous, this surface would obviously be ruled out from any 
cliscussion of its ~ r a v i t y  field. But this being not so, a triaxial 
ellipsoid plays an importai~t  role both in the theory of the figure of 
the earth as well as in the iletermination of its external field. 

A nearly spherical surface is clefined by an equation of the 
form 

r = a f l  + 3 Y, (8, L ) ) ,  ... ( 1 . 1 )  
11 =o 

where Y,, ( 8, L )  is a Laplace's functioil of orcler n, ancl 0, I; are 
t,he geocentric latitude and longitude respectively. 

Y,,(B,L) = A , , P , , ( p )  + (A , , l cosL+  BIl1si l lL)  P , , , ( p )  
+ ( A,,, cos 2 I, + B,,, sin 2 L ) Pn2 ( p ) 
+ ...... + ( A  ,,,, cos nL  + R,,, sin n L )  P ,,,, ( p ) ,  

d' where p = s i i l  Band P , l r ( p )  = cosrB -_ P,, ( p ) .  Py ( P )  is +' 
called a Legendl-e's function of degree n. 

The interpretation of the various harmonic terms in equation 
( 1 . 1 )  will be considered in  chap. VI, para 2. The coefficient A, in 
the Laplsce's function Y, (6,  L )  defines t,he mean meridional ellip- 
ticity of the surface, and is of the first order of small quantities. 
All the other A's are assumed to be of order A; or  smaller. 

The radius vector of the surface ( 1.1 ) differs from tha t  of a 
sphere of radius n by a 2 Y,,. I t s  volume correct to terms of the 
second order is equal to tha t  of a sphere of radius a ( 1 + Yo ), and 
the co-ordinates of its centre of gravity, assuming i t  to  be a homo- 

- geileous body, are :: = a A,, ?/ = a A,, ,Z = n B,,, where A,, A,,, B,, 
are constant coeflicients in the expansion for Y, ( 8, L ). 

. If  then we choose the origin a t  the centre of gravity, we call 
write the equation ( 1 - 1 ) in the form 

r = k ( l  + 3 Y, ) ,  ... ( 1 . 2 )  
11=2 

where k = a ( 1 -t Yo) is the radius of a sphere of equal volume. 



The case when there is only one Legendre harmonic present 
is very illustrative, as i t  lends itself to an easy geometric inter- 
pretation. Y = a ( 1  + E  P,,) is the equation of a surface ditEering 
from a sphere by n unclulations of varying amplit,udes, the maximum 
amplitude being ae. 

2. Potential of a static homogeneous triaxial ellip- 
soid with special application to the case of the earth.- 
The expressions for the int,ernal ailcl external poteiltials of a homo- 
geneous ellipsoid were ~- iven by Roclrigues * in 181.5. The proofs b 
are given in Routh's Statics, vol. 11. 

( a ) Internal potential.- 
2 2  yo 22 

Let the ellipsoid be - + - + = 1. 
a2 b2 c- 

a-C 
Let a>b>c,and le t€=-  denote the meridional ellipticity 

a 
a-b 

of the sectioil of the ellipsoicl by the plane y =O, ancl q = - the 
a 

equatorial ellipticity. The potent,ial t at an internal point ( x, ?I ,  z ) 
of the above ellipsoicl of uniform clensity p is 

Ui = ~~fabcp ( A,,- A1,, e" A?, y2 - A,, z2 ), ... ( 1 . 4 )  
where f is the gravitational const,ant, 

For numerical work, the coefficients A,,, A,,, A,,, A3, can be 
evaluated by expressing them in t,erms of normal ellipt~c integrals. 
But for the case of the earth, E, q are small, and i t  is more illus- 
trative to expancl the integrand in powers of E and q. 

a2+ s 
Putting - =v, we have 

a2 

* Correspondance sur 1'Ecole R o y ~ l e  Polytechnique, vol. III. 
tRouth, in Analytical Statics, vol. 11, !j 211, has deduced this from a p?-iori 

considerations. In Clarke's Geodesy, p. 69, this expression is deduced by utilizing 
the lemma, that tho potentials of confocnl ellipsoids at an external point are in 
the ratio of their masee. 



Expressing the iiltegrand as a power series in e, q  and iiitegrat- 
ing, we have 

We will make use of these expressions in para 4, when we find 
the variation of gravity on the ellipsoid. 

The accuracy of the above expressions (1 6 )  can be checked by 
the fact, 'that when they are substituted in (1 - 4 ) ,  the resulting 
expression for Ui satisfies Poisson's equation. 

V2Ui = - 2 ~ f a b c p ( A , , + A ~ ~ + A ~ ~ )  
- - -- 4 T f b c  p [ l + ( r + q ) + ( r + + 2 + L q ) ]  

a2 

= - 4 n f p [ l - ( a + T ) + E q ]  [ 1 + ( e + q ) + ( ~ + q 2 + e v ) ]  

= - 477 fp .  
( b  ) External potential *.-The potential of an ellipsoid st an 

external point ( x, y, z ) is 
U8 = .rr J p abc (A',, - Atlo x2 - AtzO y2 - Also 29, . . . ( 1 . 7 ' )  

A;'= j a  as 
u ( c 2  + s )  2/+ (4 

+(s) = ( & + s \ ,  ( " + + )  ( c 9 + " .  

* Routh, Analytical Statics, vol. 11, 5 235. 

- I 



The parameter u is given by the positive root of the cubic 
equation 

Comparing equation ( 1 . 7  ) with ( 1 - 4  ), we see that the forms 
of the internal and external pot,entials are exactly similar. There is 
however the funclamental difference, that  while in the former the 
coefficients A are constant quantities, in t'he latter they are functions 
of a variable u depending on the positioil of the point. For u = O 
col-responding to a point on the surface of the ellipsoid, the two 
expressions become identical. 

The external potential may also be ml.itten in the form 
abc  p 

U. = rr f ( B~~ - B~~~ - B,,-,$ - B,~Z? 

where a', b', c' are t,he semi-axes of the coilfocal ellipsoid through t,l~e 
external point (x, y, z ) ,  and B,,, U,,, B,,, B,, are the same functions of 
a', bf, cf as AOO, Al0, A2,, A,, ill equation ( 1 . 4 )  are of (a, b, c) .  

3. Internal and external level surfaces of a homo- 
geneous ellipsoid.- 

From equation ( l a 4 ) ,  we see that the iilternal equipoteiltiale 
are 

A,,x% AA,,y" A3,z2 = AOO. ... ( 1 . 1 0 )  

The equatorial ellipticity of these surfaces is 
1 1 

J Z n  JA,, 
1 

The meridional ellipticity is 

Now Alo = - 
3 a3 

Hence q, = $7  and = $ E .  
All the internal level surfaces have therefore the same ellip- 

ticity, which is 40 % less than that of the attracting ellipsoid. 



Hence the internal level surfaces of an  attracting ellipeoid are 
similar and similarly situated ellipsoids, but  t8hey are not confocal. 
Also these surfaces are more spherical than the bounding surface. 

The propert'ies of the ext,erilal level surfaces are difficult to  
elucidate. From ( 1 . 7 ) ,  we see t'hat their equation is 

The coefficiei~t~s A',,, A'?,, etc., are functions of a parameter zc defiiied 
by the complicated equatio~i ( 1 . !) ). 

4. Gravity on a homogeneous ellipsoid and 
spheroid.-For obt.aiaing the force of attraction on a homogeneous 
triaxial ellipsoid, we will make use of t'he formula ( 1 . 4 )  for the 
internal potential. The external potential ( 1 . 7 )  is unsuitable, as 
the coefficients of the various terms in i t  are infinite integrals with 
lower liinit zc, which can not easily be evaluatecl. 

The coil~pollents of gravity a t  a point (.c, !/, z )  are give11 by 

- + 2 n f nhc p A,,,% 9 -  - - 
62: I 

The resultant gravity is 

If $ denotes the geographical latitude, the co-ordinates of a 
point on the ellipsoid can be written as 

X = a cos $ cos L n ( l - e " l ) c o s  + sill L 
z =  n ( 1 - eZg ) sin #J 

9 ?I = 
Q Q Q 

-- 1 

2 0 u2-b2 ? - a - c -  and e13 = - , e2 - -* u2 a2 

Hence g = (CL'A,P cos2 $ COP L + d A 2 2  ( 1 - ela)l x 
Q 

Substituting values of A,,, A,,, A,, from ( l B 6 ) ,  ancl retaining 
terms up to order a2 only, we have 

19 3 1 +- 50 sin4+ ) +7) (6+10cos2 + --- c o s v  cos 2 L)], ...( 1  e15)  
10  

= fM(l+ D' + A' sing $ - B' sing 2$ + C' cosS $ cos PL , a2 ) 



where M denotes the mass of the attracting matter, and 

The magnitude of the iieglectecl terms is of the order GE:' 
which only amounts to about mgal if G is t,aken as 1000 gals. 

The values of gravity a t  the extremities ( A, B, C ) of the three 
axes are 

3 12 
9, = f.n(l+ -6 + - €2 + , corresponding to + = 0, L= 0. 

a2 5 35 

Obviously g,>g, and gb>y,. 

Hence g, >gb >go, which is what is expected. 

But this relation does not hold for a rotating ellipsoid, as we 
shall see later. 

Again, the components of gravity vector a t  any point ( x, y, ,Z ) 

are 

where AIO,A~O, are given by ( 1 6 ), and K = ~ f p  abc,  
It is obvious that the resultant gravity vector on a homogeneous 

triaxial ellipsoid does not coincide with the normal to the 
surface, because g,, g,, g, are not proportional to  the direction 
cosines of the normal a t  the point. Hence a homogeneous triaxial 
ellipsoid cannot be a level surface of the masses within it. But 
there is nothing to prevent a triaxial ellipsoid from being a surface 
of equilibrium of a system of masses. It is well-known tha t  the 
level surfaces of a thin shell bounded by concentric and similar 
ellipsoids are confocal ellipsoids. I f  our triaxial ellipsoicl is a 



member of this family, then so far as  the external field is concern- 
ecl, the masses inside i t  are equivalent to the thin she11 hounded 
by similar ellipsoicls. This is, of course, provided tha t  all the masses 
are inside the ellipsoid. Hence the external level surfaces of the 
masses, which make the boundary of an  ellipsoid a level surface, 
are ellipsoids coilfocal with the given one. 

The case of the spheroid ( a, e ) is decl~lcecl from the above by 
putting q =  0. It will be readily seen that  even on a homogeneous 
spheroid, gravit.y vector is not aloilg the normal. 

The radius of a sphere of equal voluine is 

--e? = O.998,864 a. 
9 3 

Gravit,y a t  a point on this sphere is 

The above equations c~iiable us to compare the values of gravit,y 
on a triaxial ellipsoicl ailcl a sphere of equal volume. 

For a nearly spherical ellipsoid, the following method can be 
used to give ail approximate value of gravity. 

.S y? z? 
Let - + - + -., = 1 be an ellipsoicl wit'h a small ellipticity. 

aS b2 c- 

The radius k of a sphere of equal volume is given by k3= nbc. 

Put  n = k ( l + e , ) , h = k  ( I + e , ) , c = k  ( I+€ , ) ,  
then ( l + e , )  ( l + e , )  =1, 

or neg-lect8ing higher powers then t'he first, 
el + +, + +:3 = 0. 

The ellipsoicl can now be written in the form 

The potentia,l a t  any point may be regarded as due to  a sphere 

of voluine density p, and a coating of surface density t ~ + , : e ~  oil 
k 

this sphere. The pote~ltials a t  iiiternal and external point,s are 



Gravity a t  an internal point of the sphere is 

gi = 2/"%): 

... ( l a )  
This may be writt,en in the same form as  ( 1 . 1 3  ), namely 

[I = 2?r f pnbc z/Bl,'L~:" + B2,2y? + B:302~2, 

where 

Comparison with equation ( 1 - 6 )  reveals, t,hat the above coeffi- 
cients are ident,ical ~vi t~h the correspol-tdiug A's up t'o first order 
terms. 

a cos $ cos L bZ cos $ sill L c2 sin $ in G) ,  Sub~t~i tu t ing  x = 
' Y =  .Q 

, z =  
Q nQ 

we obtain the value of gravity on t,he ellipsoid to be 

1  
10 200' l9 r2 s in22+1 .  A 

- - q cos2 $ cos 2L - - 

The ellipsoicl is partly internal ancl partly external to  the 
sphere, ancl st,rictly speaking, t,his formula applies only to those 

e port.ions of the ellipsoicl which are wit'hin the sphere. It is also 

approximate, since the three-dimensional mass Z r, x%bove the 
k 

sphere is replaced by a coating. 
Comparing i t  with the rigorous formula ( 1  . 1 5  ), we see that  

the error of this approximat'e formula is 

The maximum error is a t  the pole, and amounts to 4 mgals. The 
minimum error is about 0 . 1  mgal a t  the equator. 

The corresponrlii~g formula for gravity deliver1 from the ex- 
pression Ve for the external potential is 



As mentioned before, this inethod involves a condensation of matt,er 
of thickness of about 4 miles a t  the equator aild 8 miles a t  the pole, 
and is necessarily approximate. 

The applicatioli of this methocl to the case of a nearly spherical 
surface T = a ( 1 + C E, ,  Y,, ) will be readily unclerstoocl after a perusal 

11=1  

of chap. v. A t  t,his stage i t  need only be meiitioned tha t  if we 
take as a reference surface the spheroicl Y =  a ( 1 + el Yl + e, Y,  ), 
having the same ellipticity as the original surface, the11 the differ- 
ence in the values of gravity 011 the two surfaces call be ~bt~a i i led  
very accurately by considering the effect of a coating of ski11 density 
a p 2 E,, Y,, on a sphere of radius a. 

n=3 

5. Rotating bodies.-We have so far considerecl oilly static 
homogeneous bodies. The application of these formula: to the 
case of the actual earth is obviously very limited, because we lrilow 
that the earth is rotating, and also t'hat i t  is heterogeneous. 

The expression for the external poteiltial of a homogeneous 
rotating spheroidal earth is W= U+ $02P cose 8, where *- 

e being the eccentricity. From this we can derive the expression 
for gravity on the rotating spheroicl. 

I n  the general case, however, the body is not homogeneous, and 
its internal constit,ution is not known. W e  will now show tha t  the 
gravity field call still be determined provided the surface is an 
equipotential. The extra condition tha t  the surface is an equipoten- 
tial is required to coinpensate for our lack of knowledge of the 
internal mass distribution. 

6. Gravity formulae for rotating bodies.-For a static 
homogeneous ellipsoid, we started with an  expression for t,he internal 
potential. This is not possible for a heterogeneous body whose 
internal law of density is not known. The problem of finding gravity 
on such a surface is soluble for certain types of rotating bodies, and 
that only when the outer surface of the body is ail equipotential. 
There are two main directions into which the body of research 
into gravity formulz inay be branched. One is the classical inethod 
of Stokes, Helmert and Darwin, and the other is the modern work 
of Pizetti, Somigliana, Cassini and other continental writers. 

Stolres't solution is embodied in his famous paper " 0 1 1  the 
variation of gravity a t  the surface of t,he earth" and is applicable 
to a nearly sphel-ical sul-face. The polar equation of such a surface is 

1 

where k denotes the radius of a sphere of equal volume. 

" Routh's Statics, vol. Ir ,  5 303. 
t Mathematical and Physical Papers, 2, 1883, 181-71. 



The potential a t  an  exterilal point clue to matt,er within this 
surface is 

The surface being an equipotential, we will have C.V= TVo a t  all 
points on it. This coilclition gives 

1 where fY, = klVo - -ow; ;,,is the inass of the matter i~isicle 
3 

the surface. 
If cln, c l ~  clenote elements of length along t,he normal to t,he 

surface and radius vect,or of the sphere of equal volume respectively, 
then gravity on the surface is 

6WL 6W 
= - - -  6 % '  6r 

where 

G denotes the lllean value of gravity over the whole surface. 
Knowinn m', g and G, we call get k and u's. If then, we are ~ i v e n  !I ". 
a t  all points of a level surface having no masses external to it, the 
parameters defining the level surface are know11 with one reservation. 
All the u's car] be determined in equation ( 1 . 1 7 )  except u,, which 
cletermines the co-ordinates of the centre of gravity of the level 
surface. The gravity values therefore enable us to determine the 
ellipticity of the level surface, but not its orientation. 

The converse problem is, "Given the form of the level surface, 
gravity on i t  is known except for one constant G or m', which must 
be obtained by some other method". W e  shall discuss this more 
fully in chapters v and VI when me are considering the reference 
surfaces for gravity work. 

The formula ( 1 . 1 9  ) has a direct application to the case of 
the spheroicl and the triaxial ellipsoicl. The equation of an oblate 
spheroid correct to the first order in ellipticity e is 

Gravit,y on i t  is therefore 

The polar equation of a triaxial ellipsoid, the mean ellipticity 
of whose mericlians is B,, and the ellipticity of whose equator is 7, may 



be written as 

where Lo is the longitude of the extremity of the major axis. By 
comparison with (1 e l 7  ), we have 

1 
u , = ~ ,  u , = g  ( ~ - s i n ? ~ ) + ~ q c o s 2 ~ c o s 2  

I 0 2 1 c  TIT 0 

where *I, = - and G = 2 - o - k ,  W,, denoting t<he value of 
G k 

the pot,ential on the equipotential surface. 
Caution however is required in utilising the above formulz 

based on Stolres' paper, as they are derived from first ordei- considera- 
tions only. Helmert * and Darwin t realized that  they were inad- 
ecluat'e to sat,isfy the practical requirements of geodesy, and 
extendecl the gravity formula: to second order terms in ellipticity, 
their methods being practically identical. They proceeded from the 
following expression for the potential a t  an  external point P due 
to att'racting mat,ter wit'hin a surface. 

where Y,, = J J J R P,L dm. 
R=O 

s-, R denote respectively the dist,ances of the point P and an  
element of attracting mass dm from the centre of mass, and c is 
t'he angle between t,he directions of R and r .  

Choosing the origin a t  the centre of mass of the attracting 
system, and the axes of inertia as the axes of co-ordinates, Che first, 
t,hree terins of ( 1 . 2 3  ) can easily be evaluatecl. W e  have 
Y,=M,  the t,otal attracting mass, 
Y, = 0, 

where A, B, C are the principal inoinents of inertia of the body. 
Hence, the complete expression for the poteiltial TV is 

" Hiiheren Geodiisie, 2, 1884, 50-130. 
t Scientific Papers, 3, 1910, 78. 



The essence of this method is, that although tlhe constitution 
of the body is unknown, the leading terms of the potential can be 
evaluated m terms of certain constants of the body. Equation 
( 1 24 ) represents the poteiltial of any rotating body. I11 deriving 
it, we have not made use of the condition that  the boundary of the 
body is an equipotential surface. The form of the surface and its 
internal constitution not being known, one cailiiot proceed much 
further with the evaluation of gravity on it. Helmert, however, 
used equation (1 -24)  to give a clue to the potentials of the level 
surfaces of the earth, which he designated by 'level spheroids'. 
The forms of t,hese spheroids and the values of gravity on them 
have to he connected, so that given one we can find the other. 
This cannot be done for the actual earth, because for connecting 
(1 and 1. one extra condition is needed, namely, that W is constant 
on the surface. This coildition does not hold for the earth. 
Helmert* assumed the potential of the level spheroids to be 

K u =  + - -  ( l - 3 s i n 2 e )  - - -- 
2r2 

cosZ9 cos 2 L 
r 4r2 ( M ) 

I11 t,his, the quantities Y,, Y,, etc., have been neglected, and A, B 
are no longer t,he exact moments of inertia of a level spheroid. 
Each level spheroid is characterised by the value of U on its 
surface. 

Since we are now aiming a t  accuracy up t,o second order of 
small qua,nt.it,ies, we have to take 

y2 = U12 + U22, 

where 

Gravity a t  an external point so deduced is 
:3K 

= P1 ( I + ?  ( I - 3 s i n 2 ~ )  + S 21.- 
g ( B - A )  C O S ? ~ C ~ ~ ~ L  

4 Mr" 
u2r3 -- 

Helmert does not develop this equation f ~ r t ~ h e r .  Attention 
may however be directecl to the fact that if we assume t,he form of 
the eyuipotential to he 

the formula for g~*avit,y ( to t,he first order in e,, ant1 q )  reduces to 

which i.s i(l~ntical with  quat ti on ( 1 ~ 2 2  ). Tf TJ,, denotes t,he value 
of thc! potential on the level spheroid, the  elations between tlhe 



It is worth pointing out tha t  t,he expression ( 1 . 2 5  ) for the 

pot8ential must be supplementecl by a term before i t  can be used 
Td 

various constants are 

for clel-iving the gravity formula correct to 0 ( r" 011 the surface 

G- = -- 2 
':(l -8m' )  

, w 3 k  m =- 
G 

K - 2  1 
k" 

R-A - 2 -- - "I* Mk2 3 I 

Helmert* next took as an  approximation to  TI7, 

, 

ailrl proceecling as before fo~~ilcl  the equation of t,he level spheroid 
U =  T/TTn to be 

111 terms of geographical latitude +, equation ( 1 ~ 2 8 )  ]nay Iw 
w1.i t , t ~ n  as 

y = G ,  ( 1  + A '  sill" - RR' sinP 2 +), ... (I . : ; ( ))  
-- - , 

H6heren CfeodBsie, a, 1884. 89. 

5 ~ = n ( l - ( r - 2 $ +  - em+ 6)sin28-  (2 s"  5 em- 6)siniB) 
2 2 

... ( 1 . 2 7 )  
and gravity on i t  to be 

5 g = G , ( l + ( - n a - r + ~ e ? -  rsm- ~ i n ~ 8 - ( 7 ~ ~ - 3 S ) ~ i 1 l ~ B  
2 2 

1 
I '  

. . . ( 1 . 2 8 )  
\vhel.e G, deilotes the mean value of gravity on the equator. 

;3 0 1 9 "  4 1  r : , =  a f M  f l + r  - -9n-r- --em+-nr- +-; 6 
\ 

7 t  2 2 4 4 I 
02cc 

1) )  = - 
(:, 
7) 6= - -  

:3 T< - - 1 1 3 1 
- e 2 + -  - e w +  mj2+-- 6 2n"' - --n7 2 

2 4 7 
1 1 n = - P ( I +  r +  - n l -  1 P + --r 3 wr - --n?+ 1 

+? 6) 

* ( 1 . 2 9 )  

1 Kb : 3 3 3 3 2 15 ' J  



5 1  
where A' = - e +  -m - 8 -  - 4 m  + - 8  

2 2 ' i ... ( 1 . 3 1 )  
4B' = 38 - 7e2 + 46 A'. 

The mean value of gravity on surface ( 1 . 2 7 )  is 

Since this is inclepenclent of 6, we see that the mean value of gravity 
on the faillily of surfaces ( 1  - 27 ) is the same for different values 
of 6. 

5, cnt, the surface ( 1  27 ) becomes a true If we take 6 = 5 6"- 

spheroicl. If this spheroid is an equipotent~ial of it,s ii~ternal masses, 
gravity on i t  is 

I n  terms of geographical lat'itucle $I, gravity on a true spheroicl is 

Darwin starts with the level spheroid 

which becomes identical with ( 1 . 2 7  ) if x is talren equal to  
7 .  s - € - - -  m c  - 6.  

Equation ( 1  ~ 3 7  ) may he written as 
2  1 1 2 , . = r b [ ( l + - - X  -- r - - - r z ) + ~ " ~ ~  - - c - - E -  

15 :3 5 3 7 

2  + p - - - - ) - (  - )  . ( 1 . 3 8 )  [ 1 3 63 

I F ~ ~ I - F I  



Darwin's formula for gravity on this surface is 

G clellotes the mean value of gravity on ( 1  . 3 8  ), ancl is given by the 
expl.ession 

1 03k 
where m = -. 

G 
The equatorial value of gravity is 

It, should be noted t'hat while G,. clepeilds on X, G does not. I11 

other words, the mean values of gravity on a spheroicl and a surface 
whose radius vector differs from it by n x sin2 6' cosV are the same. 

The parameters 8 and x define the radial separatioil of a level 
spheroicl from a true spheroid. It is to be observed, tha t  they clo 
not affect either the mean value of gravity on the surface, or the 
meal1 radius. The surface ( 1 3  7 ) differs from a true spheroicl 
having the same axes by n x sin" cos". W e  shall see in t,he next 
chapter tha t  x is of the order 200 x 10-% The level spheroid 
approximating to the geoid of the earth can therefore differ a t  the 
most by tell or fifteen feet fsom a true spheroid. 

A11 extensioil of the above result is, tha t  if the geoid is 

gravity on i t  is 
cc 

g =  G [ 1 + a P 2 + f l P , + z ( n - 1 )  u , , ] ,  ... ( l . a - 1 . 3 )  
2 

1 64 where a =  - ( 5 m ' - 2 e ) + - m E - L ( 2  
3 6 3 2 1 



This is a more precise form of equation ( 1  - 19 ) which was 
based on first order consiclerations only. 

It is interesting to show that  this formula is correct to terms 
of order a%y consiclering it,s application to an ellipsoid. The equatioil 
of a triaxial ellipsoid is 

where r denotes the ellipticity of the meridional section through the 
xa plane, and q the equatorial ellipticity. 

Comparing with ( 1 . 4 2  ), we have 

Hence, by ( 1 - 4 3  ), 

o"c The coileta~lts a, @ contain a variable m' clefinecl by m' = --. It. 
G 

0 3  rC can be easily shown that it  is connected with the variable rfi = -- 
9. 

5 1,y the 1.elatior1 ,YIL' = m ; g,, denotes t,he value of graviby 

a t  the poilit B= 0, L=O. Putting in the values of a, fl in terms 



of m, me have 

5 1 25 26 1 145 
g = o  [ ( I  -6m+-E 3 + 36 - 1 1 ~ * + - ~ -  4 5 

5 1 + sin20 (- r + y m  +-7 + 
2 

15 7 1 + sinik e ( - 2 ~ E + - - ~ " + - ~ C O S V C O S ~  2 L ] .  

To get t,his expression in  terms of geographical latitude 4, we put  
6' = c$ - E sin 2 $. Then 

5 1 25 26 1 145 
g = ~  [ ( I  - - r n +  - e  + -m+-$-g7- - me 

6 3 36 45 126 
5 1 19 

+sinv(- r + 2 m  + -7, + - mr - - m- - 2 42 12 
1 5 1 

+ ~ i ~ ? 2 + ( ~ r 2 -  mr )+i C O S % +  C O S ~ L  ] 
=GI [ l   sin" .- B'sin%c$+ C ' C O S ~ $ C O S ~ L ] ,  

where 
5 1 25 2 6 1 145 

+ - e  + --m? + -c2- 
3 3 6 4 5 

8 m + d - - r 2 + - s m  
15 9 

2 2 2 1 = f a q ( ~ + ~ E + - ~ - - ~ +  n2 3 3 - r2+m2 5 

1 fM [ 1 3 9 27 1 1  Hence# =.- 1 + E + - q  - -m+t?+ -m--- 
n2 2 2 4 14mEJ 

5 1 17 Also A' = - E + - m +  -7--me 
2 2 14 

1 5  1 B =-me - - € 9  
8 8 

' 1  c =- 
2 q* / 

This agrees precisely with our later formula ( 1 * 73 ) obtained by 
Pizetti's method, which is correct up to terms of order €2. 

To complete this discussion, we will give t'he gravity formulz 
on the two surfaces 

~ = n  ( 1 - E  sin? 8 )  ... ( 1 . 4 5 )  

The radii vectores of these two surfaces differ by terms of 
0 ( ne2) ,  i.e. by 200 feet or so. The terms in B' in the expressions 
for gravity on these two surfaces will naturally be different. 



5 '  2 64 4 .  
c!,= -m - - e + --em, - --e- 

3 3 68 2 l 

,g= - 12 , 8 , w2X: 7- m e - - e2, and m. = -- . 
35 fl I 

W e  will now consicler Pizett,i's * ancl Somigliana's t treatment. 

On the surf ace ( 1 . 4 5  ), gravity is 
g=G, ( 1 + h  sin2 6 + p  sin26 cos2 6 )  

= G, 
8 

= G  ( 1 + a P 2 + P P 4 )  
= G, ( 1 + A' sin2$ - B' sin2 24 ), . . . ( 1 . 4 7 )  

where 
5 17 3 n X=-m-~--me--~-  
2 14 7 

7 
1 5  p = - m + e  2 
2 

2 7 G,= -;;- 
a- 

5 2 6 4 26 25 
a - e +  - r ~ l f - - € O ' -  -m- 

3 3 63 6 3 18 ( 1 . 4 8 )  

-- -- -- 
* Principi dell& teoria meccnnicn clella fij~irn d'equilibro (lei planetti, Pisa, 1913. 
t B. Accedemie Delle Scienze, Torino, 1934. 

12 8 n P  me me--^ 
7 35 

5 1 7  3 A' = - m  -6- -me - - €2 

2 14 7  
/ 5 5 o B =-me - -6s- 

8 4 

I 

G~ f~ j 
On surface ( 1 46 ), 

g = G, ( 1 + A sin26 + p sin26 cos"6 ) ... ( 1 . 4 9 )  

= G ( l + a P 2 + p P , , ) ,  
where 

5 1 7  2 €2 A=-m-e--me-- 
2 14  2 1 

P= :em + €2 



Their method leads to  elegant f o r m u l ~  for gravity on an  equipoten- 
tial sphere, spheroid and triaxial ellipsoid. These formulz do not 
involve power series. For numerical work, however, i t  is convenient 
to develop expansioris in terms of 6, 7 and neglect terms of small 
order. 

The external potential of any rotating body inay be written as  

where Vo a i d  Vl are two functio~ls such tha t  
9 ,  = 1 ancl Vl = ( x ' + ~ '  j on the surface, 

ancl 
Lt. RVO=mO,and Lt. RVl=m,. 
R - t a  R+oc .' Y"? For an ellipsoid , + - + - = 1, the appropriate expression a- b? c L  

for the external potential is 

B1V11(~~)+B,V,2(u) ( 1 . 5 9 )  

where u denotes the parameter of the confocal ellipsoid which passes 
through the point ( ;c, y, z ) at which t'he potential is required, and is 

E' Y? 2' 
given by the positive root, of t'he equation - + -+ = 1. 

CL' + 'U b' + u c + ZL 

R,, B, are two constailts which are cletel*minecl from the conclitio~l 
that W is constant on the ellipsoid. 

The functions V are given by the following expressions : 

" ds 

v" ( = I,, Jm 

where + ( s ) = ( a a " + s )  ( b % s )  ( c G ? + s ) .  J I 
Let 

-- 1 x - 

j,, ( a q s )  ( b g + s ) J J r ( a )  
, " ? o =  



Substitute these values of V [ , ,  V2, in equation ( 1 . 5 2  ) and write 

The conclitioil that W is constant for u=O gives 

In  these equations A l l ,  A,,, etc., are infinite integrals defined by 
( 1 ~ 5 4  ) with the lower limit of integration u= 0. 

If y, denotes the component of gravity along the z axis, we have 

From equation ( 1 55 ), we have 

Also since 

6u 2 x 
we have -- = + 

sx 

Subst,it,uting these values in ( 1 5 7  ), we have 

f i l l -  02K ( u ) 
Similarly g ,  = y . -  I + Q I }  ( 1 5 8 )  

JS (a) a'+% 



Puttii~g 1h= 0, the componei~ts of gravity on our ellipsoid at a point 
(x, y, 8 ) are 

jT1-o2K(0)  f o ' E  
abc h2 ( 0 )  

where h' = uZ PO = b2 Q0 = C? RO and l',,, QO, Hn are the values of 
P, Q, El for u= 0. 

The surface being equipot,ent'ial, the resulting clirection of 
gravity is along the normal, whose direction cosines are 

;cgx Hence g = - + ?/9!1 zy: .fM-o"W + o" lR(0). ( 1 .(j1 ) +T- ---- a%(O) b2h (0) c h(0) - abc h(0) 

If g,, gb, g, denote the values of gravity a t  the extl*emities of 
the three axes, we have from ( 1 . 6 1  ) 

2 ~ p i  01'3 1 %-- fa,-- 
a - atc  (. +-7i- 

ch2 

O -  1 go x- 0- Hellce-.: + 5 2 +@ -q =- f ~ - ~ K ( 0 ) + o ' E h ~ ~ l ) = y ~ b ( O ) ,  
a n -  b 'b \ ' cd  nEc nbc 

- - ('ag, cos" + bgb sin2 L ) cos" + cg, sin" 

2/ ( a' cos2 1; + b2 sin' L ) cos" + c2 sina + 
1 + p sin2 c$ + q sin" cos' $ 

= g. Y ... (1 -6s )  
1 - e,%in2+ - elSsinO-Lcos2 c$ 

where 1' = (:gc - ago bqh - a!/" , y =  
"9, a!)., I 



Expanding the right hand side of ( 1 63 ) in an  infinite series, 
ancl retaining only terms up to order E" Somigliana* has obtained 
t,he expression 

1 1 y = ga [l + - ( e," 21, ) sin" + - ( e l2+  ?q ) COB' $ sin' L 
2 2 

1 + -e," 3e,' + 4.13) sin $ . 
8 1 

The above summarizes Pizetti's aacl Somigliaaa's treatment for 
a triaxial ellipsoid. As these for~nulae st'ancl, t,he various coilst'ants 
are expressecl in terms of infiilite integrals, and i t  is neit,her easy 
to know t,he orders of magnitude of t.he various terms, nor possible 
to compare the f o r m u l ~  wit'h the older ones based on classical 
treatment,. It is of interest to find expressions for these const,ants 
in terms of E, q which we know to be sinall for t,he case of the 
earth. The results are as follows. 

The values of All, A,,, &c. occuring in ecluat,ion ( 1  -56 ) col.rect, 
t,o the second powers of E and q are 

Substituting these values in equation ( 1 - 5 6  ), we have 

The coefficients Po, &,, Rn in equation ( 1 . 6 0  ) are 

* Bull. Geod., 38, 1933, 178-87. 



If TI:, clenotes the value of the potential on the pllipsoid, we 
have 

1 1 
W, = - 2 f M A , +  ;w'[B,  3 (AlO-cZAI1)+Bp(Apo-c2A, , , ) ] ,  

where A,, is the value of V,, ( u ) for u = 0. 
Substituting the values of the various constants, we obtain 

9 1 
~ e 2 - - m ' + 7 m e  
1 5  2 3 .  

By equation ( 1 - 6 2  ) 

I 
- ,  f M  - 

$1 - - 
1)c 

= fz ( I  + c + l ) + r ? + s ? + r ? )  - 0 2 r r  

1 2  80 46 +- 6 - +  ---- 7- + - s  
2 9 4( 147 147 

- .  * )  n 9 ,  2 7 
) 

-- fJ'( I +€+?I- -: 91 + E - + T - +  - m d + s g - -  m r  
~1~ - 41 1 4 1  

3 7 
- 1 ,  1 4  . ( 1 . 6 9 )  

3 ""a7 
mhel-p n~ = - - - = 

I .fM 
The other two coi1stai1ts involv~cl in equatioil ( I . G3 ) are given 

I11 equation ( 1 .65  ), the coefficieilts of the various tci-ins inside 
the braclret, correct to  order s" are 

I " 5 1 26 - ( e , - + + ) =  - E + - m +  - e 2 -  
2 2 2  7 
I n  - ( 0 1 " + 2 q )  = -7 
2 

- I ... ( 1 . 7 1  ) 

1 5 1 .  - e , ' ( 8 e ~ ~ 4 4 p ) =  m e - - - € - .  
S 2 2 

Equation ( 1 . 6 5  ) may also 11e written as 
1 g = q,, ( l -  2 n  ) [ l + ~ ' s i n " - ~ ' s i l l ' 2 +  

+ C' cos2 + cos ? I , ]  
- 

= G ' ( 1 + 8 ' s i n 2 $ - U ' s i n 2 2 $ + C ' c o s ~ c o s 2 ~ ) ,  ( 1 . 7 2 )  



where 

It is interesting t,o compare formula ( 1 . 7 2  ) with the correspond- 
ing formnla ( 1 . 1 5 )  for a stat'ic homogeneous triaxial ellipsoicl. 
The two formulz are similar. By a siinple manipulation, equat,ion 
(1 - 7 2 )  may be written as 

1  C =-  
2  "l 

1 

- .  

The values of the const.ant,s are now clirectly comparable with 
bhose of equation ( 1  - 15) .  We see tha t  the coefficients are quite 
different in the two cases, the reason being tha t  formula ( 1 . 7 2 )  
pertains to a level surface, while ( 1 . 1 5  ) does not. 

, ... ( 1 . 7 3 )  

To see how far the static homogeneous triaxial ellipsoicl cle- 
viates from a level surface, we will work out the angle x which the 
gravity vector a t  a point ( +, L ) on i t  makes with t,he norin:~l. 
Obviously, 

- ? m e ) .  14 ,, 

This is the form in which the formula for normal gravity is usually 
expressed, as we shall see in the next chapter. 

cos + cos L I/, + cos sin L cj, + sill $I g, cos X = - 

Il 
Substituting the values for g,., g,, g: and from equations (1 .12)  
and (1 .13)  and simplifying, we have 

2 cos x = 1 - - E? sino- 2$. 
25 

This equation shows that x a t ' t a in~  it,s maximum value a t  $I = 45'. 
For E = 2&, this value amount,s to about 5 min. of arc. 



Another point to  which attention might well be directed is to 
compare the expressions ( 1 . 7  ) and ( 1  ~ 5 2  ) for the external poten- 
tials of an ellipsoid. Omitting the term arising from the ce~ t r i fuga l  
force in equation ( 1  5 2  ) and bearing in mind tha t  Vo < u ) =A, 
for u = 0, we see tha t  this expressioi~ becomes identical with ( 1 . 7  ) if 

2  . r r fpaG R1 = 5. -- ( 2 ~ - 3 ~ ~ - 2 e q )  
o2 

and B2 = ! nfp ( 2 ~ - 2 9 ~ - 8 ~ ~ + 3 q ; .  
3 o2 

These values of B,, B, are different from the ones obtained ill 
( 1 67  ). A little consideration shows, however, tha t  the orders of 
magnitude are the same. The discrepancy is due to the fact that  
B,, B, of equation ( 1 . 6 7  ) appertain t o  a rot'ating ellipsoici, on which 
the potential is constant, while our present values correspond to an 
ordinary st.atic ellipsoid. 

We will now consider the iinportant case when the level surface 
is an oblate spheroid. The appropriate expressioil for the external 
potential functioil in this case is 

where 

and + ( s )  = ( c 2 + s ) .  

The coilclition W= W,, for u=O gives 

- c2 
where 8'3 = - 

c2 
Proceeding in the same way as for a triaxial ellipsoid, we have 

( 1 . 7 9 )  
If G, and G ,  denote the values of gravity a t  t . 1 ~  equator and pole 
respectively, we have 



Hence * 
a G,, cos2 9 + c G,  sin2 $ '= cosl 4 + $sio24)t 

, 
c G, -a G, n2 - where p = - and e2 = . ... ... (1 .82)  

n G, TI.? - "  

The values of the various const.ants have been worked out 
in terms of the ellipticity e with the following results : 

Equation ( 1.81 ) may also be written in t'he formt 
g = G ,  (1+A's in2+-B's in22+-B, s in2+s in22$  

- B, sin4 $ sin" $ - . . . . . . . . . 1 9  ( 1 . 8 5 )  
where 

- 

* Bull. geod. 88, 1933,178-87. 
t xbid as, ieao, M. 



This is an extension of equation ( 1 .35 ) based on Helmert's theory. 
Helmert included only terms up to the second order i11 E ,  arid con- 
sidered the first three terms of the series expansion. Equation (1 .85) 
call be written down to  any number of terms tha t  we like, the law 
of coeflicients being known. The same applies to  formula ( 1 . 6 5  ) 
for the case of an  ellipsoicl with unequal axes, which can easily be 
extended to include higher order terms. For computing theoretical 
gravity, however, the normal gravity formulae usually take into 
account only terms up to order e v  see chap. 11 ). 

~5'phere:-The case of a spherical level surface is capable of easy 
solution. The potential 

must be a constant on the sphere. This suggests that U,, should be 
AP, of t,he form , . The bounclary condition tha t  PV is a constant for 

qd 

I - =  (6 determines the constailt A, a i d  gives 

The surface being level, the resultant gravity is along the normal, 
and is given by 

7. Clairaut's equation.-Neglecting the loilgitude term in 
equation (1 - 2 5 ) ,  the value of gravity on the level spheroid becomes 

This expression fol. gravity is deduced from the equation ( 1 * 25 j 
for the potential by assuming A = 3. If a, c cleilote the lengths 
of the equatorial ancl polar semi-axes, and G, , G,  the corresponding 
values of gravity a t  their extremities, we have 



This relation between the values of gravity a t  the equator and 
the pole is correct to first order terms in e, and is known as 
Clairaut's equation. 

For a true spheroid, the above may be cleduced by eliminating 
A, between the two equations ( 1 . 8 0  ). We get 

which when simplified leads to equation ( 1  - 89  ). 
It might be noted that the ellipticity e ancl the difference 

( G,-G, ) vary in opposite directions. The value of ( G,, - G, ) is 
maximum for a spherical level surface. By ( 1 . 8 8  ) we see that for 
such a surface it  is given by 

Another relation which follows from equations ( 1 - 8 4  ) is 

where p,,, denotes the mean density of the matter inside the spheroid. 
8. V a l u e s  of gravity at the extremities of the prin- 

cipal axes of a triaxial ellipsoid.-For a triaxial ellipsoid, 
the relations between the values of gravity a t  the extremities of the 
principal axes can be derived from equations ( 1 . 6 2  ). Denoting 
these by ( g,, g b ,  g, 1, we have 

B 1 1  
CL b nbc 

The relative orders of magnitucle of (I/,(, y,,, 9.) can also be 
obtaii~ecl from equatioiis ( 1 . 6 2  ) by substitution of the values for 
B, and B,. After some simplification, we have 



Hence 

For the values of e, m appropriate t.o the earth, the above two 
equations show tha t  9, > y ,  > ga, a11 important result, which is by 
no means obvious a t  first night. g, will be less thaii p,, if 

- 7  - 0  

59 rn- e >  1 or if 02> 4 x 10 see 
14 

This will occur for a rot,ating body whose period of rot,at,ioil is less 
than 2 8 hours. 

9. S u m m a r y . - W e  have cliscussed above, different inethocls 
of determining the gravity formulae. Helmert's method consists 
in selecting some special terms from t,he general expression ( 1 . 2 4  ) 
for the potential. This modified potential defines his level spheroid 
and leads to the value of gravity on it,. ~ a r w i n ' s  inet,hod is practi- 
cally identical. 

Pizetti's method gives rigorous expressions for gravity on an 
equipotential sphere, spheroid and triaxial ellipsoid. These formula: 
can be expanded in series, and we can take as many t'erins as 
are necessary for the accuracy aimed at,. To obtain terms beyond 
the third by Helmert's method requires great labour. I n  formula 
( 1 - 85 ) for example, five terms are given, while the corresponding 
Helmert's formula gives three terms. Again, in Helmert's method, 
in the expression for the coefficients of the gravity formula, terms 
beyond order E' are neglected as they involve laborious calcula- 
tions, while Pizetti's method includes higher order terms. 

Given the dimeilsions of a spheroid, the constants of the gravity 
formula appertaining to  i t  can be derived to  any accuracy that  
we like by Pizetti's method, but not by Helmert's and Darwin's 
methods. For example, for the International spheroid, values of 
normal gravity can be computed t o  four places of decimals by the 
formula .yo= 978 -049 ( 1 + 52884 x 10-7 sin" - 59 x 10-7 sin" #I ). 
When however 6-figure accuracy is wanted, one more term as given 
by Pizetti's formula (1'85) is required. It might be remarked, however, 
t,hat with the present degree of accuracy of gravity ineasui-ements, 
the values of normal gravity to  six decimal places are of academic 
interest only. For all practical purposes, Helmert's formulae are 
good enough. 

Stokes' formula ( 1 . 1 9  ) for gravity is based on first orcler 
considerations, slid is not accurate ellough to be used eit'her for 
normal gravity, or for the cleterminatioil of ellipticity. But we 
shall see in chapter v that his formula is very valuable for (letel-- 
m i n i ~ ~ g  the undulatio~is of the geoid wit,h respect to a suitably 
choseri reference surface. 



GRAVITY FORMULB AS OBTAINED IN PRACTICE, 
AND THEIR COMPARISON WITH THE 

THEORETICAL FORMULA3 

I. Method of deriving gravity formul2e.-We see from 
the theoretical consiclerations of the prececling chapter how we can 
determine the forin of a level surface from t,he val.iat.ions of gravit.y 
on it. The surface of the earth is iiot an eq~ipotent~ial ,  ancl t,o 
~nalre the above t,heory applicable, the observecl values of gravity are 
reduced to t,he geoicl by a suitable reduct,ion. If the geoid were a 
true spheroid, observations of gravity a t  three k i io~vi~  points would 
enable us to cleline it,. If it were a triaxial ellipsoid, lrnowleclge of 
gravity a t  four points would be recluirecl. I11 practice, however, to  
obt,ain reliable values of the constants in gravity foi-mula, i t  is 
customary to  make use of all the available gravit'y data and apply 
the method of least squares. The geoidal values of gravity have 
been fitted to formulze of the type 

g = G, ( 1 + A' sing + - B' sin? + j 
and g = G' [ I +  A' sin" - B' s i n 2 + + C C '  cos" cos 2 ( L - L o ) ]  
by various investigators, and t'he results are tabulatecl in t'he next 
para. As we have seen already, these f o r m u l ~  take account of only 
terms up to the second order in the ellipticity E. 

Ackerl *, using Prey's reduction, has expressed the gravity field 
of the earth in terms of spherical hal.monic functions up to the 16th 
order. He  uildertook these laborious calculations with a view to 
utilising them for finding the undulations of the geoid. W e  shall 
see in chap. v tha t  this has not proved a fruitful fielcl of research 
as Prey's anomalies are ~ulsuitable for this purpose. 

2. Gravity formulae.-The following are the inail1 gravity 
formulz which have been obt,ained a t  various t,imee. The relevant 
values of ellipticity of the level surface, ancl the constailt x defining 
its departure from a true spheroid ' ( see page 15 ) are given below 
each formula. The relation between x ancl the coefficient of sin" i11 
the gravity formulx: will be explained ill the next para. y,, deilotes 
normal gravity. 

1 ) Helmert 1901. 

1 
E = , x = -205 x lo-'. 

2 9 8 . 3  

* Akad. Wien, sib-ber. d. methem. natnrw. kl. ( X I  a), 140, 1931 end 141, 1982. 
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( 1 1 )  De Sitter 1927. 
7, = 978.052 [ 1 + 52884 x 10-7 sin"- 75 x 10-7 sin2 2$ I, 

E = 1 - - 205 x 10-0. * 
? 9 6 . 9 6 + 0 . 1 0 ' ~ -  

( 12 ) International spheroid. 
yo = 978 -049  [ 1 + 52884 x 10-7 sin"- 59 x 10-7 sin$ 2 4  I, 

1 
I e =  - 

297 ' X =o.  

( 13 ) Jeffreys 1936. 
y,, = 978 .051  [ 1 + 5282 x 10-6 sin"- 7 x 10-6 sin2 24 1, 

3. Interpretation of the constants . -The coilstant B' in 
the formula y = G,. ( 1 + A' sin" - B' sin" $ ) is a small quantity, 
its magnitude being about 1/800 times tha t  of A', a.nd it has been 
found hhat i t  cannot be deduced by least square solution with ally 
accuracy. I t s  value has to be assigned in some other way. By 

1 5 Relmert's theory, B' = - - r2 + - m r - 3 x for a level spheroid. 
8 8 4 

The value of x has been inferred by Darwin from two quite different 
assumptioils about the internal constitution of the earth. He  first 
assumed Roche's law of density, and obtained x = - 205 x 10-8. 
Then he used Wiechert's law tha t  the earth consists of a solicl 
core of clensit,y 8 - 206, on which is superposed a mantle of density 
3 .2 ,  ancl cleclucecl = - 175 x lo-'. Taking x = - 205 x 10-8, 

1 1 
~ n ,  =- ancl e = -, we get B' = 7 x 10-6. 
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The quantity 7 x sin" $ which occurs in most of the 

gravity formulae is thus based on theoretical considerations. The 
magnitude of this term is 7 x 10" sin' 2 $ gals. The 
maximum value that  it can attain is 0 . 0 0 7  gals, w h ~ c h  is quite 
appreciable. In  India the magnitude of this term ranges from 0.0005 
to 0 . 0 0 6 3  gals. Darwin's work shows tha t  the figure 7 x 10-6 
for R' is quite in~ensit~ive to  the hypothesis about the internal 
con~tit~ution of the earth. It appertains to a level spheroid, 
rlepresserl below an exact spheroicl by about 10 feet in latitude 45'. 

1 For a true spheroid, we see from ( 1 - 36 ) t ha t  B' = - E (!jm - c). 
8 

Jcnowing m ancl E we can get the value of B'. As an example me 
1 haw m = -- 1 , E = - for the International spheroicl. These 

288 :16 297 
values givp R' = 5869 x 

From thrl foi.egoing discussion, we infer tha t  if the value of B' 
i n  nssigll~tl i ~ r  a rlorlnrtl gravity formula, i t  implies a radial cleparture 
of the Ievcl sphe~witl from n true spheroid having the same 
rallipt,icity by 

'' a ein2 e cos2 e 
3 



The remaining constants in the gravity formula are derived 
from least square solution. Helmert's* 1915 formula was de- 
duced by him from 3000 stations reducecl by free-air. Pormulz 
( 7 ) and ( 8 ) were computecl by Heislranent with the aid of 656 
stations, the one with the loiigitude term and the other without it. 
A11 stations in the same degree sheet were treatecl as a single st,ation. 
I n  other words, he used 656 degree squares oil the globe. In  1928, 
using 841 squares and including the longitude term1 he obtained 
formula ( 9 ), while without the L-term he obtained 

yo= 978 so44 [ 1 + 5301 x 10-6 sin2$ - 7 x sin' 2$] .  ... (2.1) 

Formula ( 10 ) was based on much more data, there being 1591 
squares. Heiskanen used isostatically recluced values of gravit,y and 
oinittecl the stations on islands and ocean deeps where the isostatic 
anomalies are large. He also dicl not consicler the squares in the 
Red Sea since the anomalies there are all highly positive. 

G, clenotes the equatorial value of gravity. I ts  values foullcl 
by different authors utilizing different observation material range 
from 978.030 to 978.052. The differences are partly clue to the 
values of gravity being reduced to the geoid in different ways ancl 
partly due to the different location and extent of the gravity data. 
The spread of the gravity observations used is probably responsible 
for a greater part of the discrepancy. 

When the longitude term is included in the gravity formula, G, 
has to be replaced by G' which denotes the mean value of the equa- 
torial gravity. Accorcling to Heiskanen's latest formula, 

G' = 078.052. 
The use of different gravity formulz by different countries is 

obviously unclesirable. The adoption of the International spheroicl 
by the Internatioilal Uiiioil of Geoclesy a i d  Geophysics at the Maclricl 
meeting in 1984 as a standard basis for ast ronomico-geodet.ic worIi 
also led to the deinaiicl for a universal gravit,y formula. The first 
step towards this objective was to fix a value for (7,.  Silva* sug- 
gestecl that G, = 978 .O49 was the best value, as i t  woulcl secure 
the best agreement with the observed values of gravity. 

The climensions of the International spheroid are 

a = 6,378,388 met'res = 20,926,488.OS feet, ) 

2 n Substituting (:, = 978 ~ 0 4 9 ,  w = = 7,202,115 x LO-" nnrl 
S6164. 1 

the above values of a, E in ( 1 36 ), \ve have 
11' = 5,28S,YS$ x lo-" 
B' = 5,869 x > ...  

- - -  -- - 
* Yitznngsl~erichtc d ~ r  I<. Prcu. ~ lk: t t l ,  der Wiss. 4 1 ,  1915, 676-S.  
t VerofF. dt~ Finnischon (feud. Inst. 4. 182.1, oli:~i). 111.  
f llriskancn. (;crl. Beit. z. (;copl~. 1 0 ,  1928, 366-7'7. 
5 Aomc1,-N~eion:~lc, dci Lincei, 1!130. 



I n  the International formula ( 12 ) therefore, G, is decluced 
from the various least square solutions, and A', B' from theoretical 
expressions for gravity on a spheroicl. 

An important fact about G,, which is worth mentioning, is that 
it fixes the mass, and hence the mean density of t.he equipotent,ial 
surface. Thus for a spheroid ( a ,  e )  we have from equation ( 1.84) 

where p,,, denotes the mean density of the matter insicle the spheroid. 
Taking Ge = 978.049, o" 0.5256 x 10-8 and f = 6.675 x 
the above equation gives t,he value of p,,, for the International 

1 spheroid (a = 6.878388 x 108cm., e =--) to be 
297 

p,,, = 5 . 5  124 gm./cm:$. 
The corresponding value in the case of the Everest spheroicl 

p,,, = 5 5133 gm./cm". , 
' 

The const,ant A' is very important, as it gives a clue to the 
ellipticity e of the level surface. From formula ( 1 .36  ) we see that 

0-CC i t  depends on both e and m, where m = --. I n  other worcls, the 
G, 

value of this constant clepends on the value chosen for the equatorial 
gravity. The variation is small however. A change of 1 x 10-"n Ge 
corresponcls to  a change of 8 8 x i11 A'. 

The following t'able gives the variation of A' with e for the - 

value of m = 1 
28s. s 6 i  ' which corresponds to 12,. = 978.049 aiicl 

n = G,378,3SS metres. 

A(lopt,it~g t h ~   value^ of (!, ai~tl 11' as give11 aI,ovtl, this tal~lc 
6:11al)lf~e tho fat-muln for normal gravity t,o 110 w r i t t c ~ ~  for  auy givc11 



spheroid. As an example, we know that  for Clarke's 1880 spheroid, 

E = -. The value of A' corresponding to this is 5248 x 10-6. 
293.5 

The expression for gravity on Clarke's spheroid is therefore 
yo = 978.049 ( 1  + 5248 x sin2$ - 6 x lod6 sin22$). 

We see that a change of 12 x in A' corresponcls to a change 
1 of 1 in -. This enables us to decide what order terms should be 
e 

1 
retained in the expression for A'. If we are content to obtain - 

e 
to one place of decimal, i t  suffices to retain terms up to order 

( = 11 x Terms of order e3 amount to 3 x and will 
1 

have no effect on the first place of decimal in 1. Stolres' formula 
€ 

( 1 - 19 ), based on first order considerations,~implies that  A'= i m  - r.  
The value of t,he reciprocal of the ellipticity deduced from t.his 
relation may be wrong by one unitl. 

Another method of cletermining the ellipticity which does not 
involve least squares is to make use of t,he equation ( l m 2 9 ) ,  namely 

3K 1 1 3 1 
- - e - - m - c " - ~ m +  -ms+--6. 2ns - 2 2 4 7 

The values of the const,ants K ancl 6 are assigned from certain 
conside~~at~ions, which will be dealt wit'h in the next chapt'er, and 
the value of e is deduced thei-efrom. 

The range of e evidenced by the gravit'y formulze varies from 
* 
1 Like G, this range is doe to the use ( o r  availability ) - to- .  
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of different areas of gravity survey. The value of e deduced from 
gravity data depends of course on the gravity reduction employed. 

4. Tables for normal gravity.-G. Cassinis* has published 
tables giving t,he values of gravit,y on t,he International spheroid, 
correct to three ancl four places of decimals. For t,his accuracy tmhe 
formula ry,= 978 .049  ( 1 + 52884 x lo- '  sin" - 59 x lo-' sins 2 $ ) 
is sufEcieilt. W. D. Lambert and F. W. Darlingt have tabulat,ed 
t'hese values to 6 l,laces of decimals. For this they had to include 
one more t8erm, involving sill6 $, in the above formula. As men- 
t'ioned a t  t,he end of the preceding chapt'er, this is a far higher 
accuracy bhan what is required in pract'ice. 

The change of normal gravit,y with $ is given by % A O, A' 
6d 

sin 29. The chmlg~  is most rapicl a t  mid-lat,itodes ( sbout'0- I ingal 
per lo Iat,it,utltb ), ant1 is zero a t  the equator and the pole. 

5. The Longitude term and its significance.-Form111x> 
( 2, 3, 8, 9 aiul 1 0  ) of para 2 are important, as they contail1 a 
- - -  ~ - .. - - -- ~. 

* Hnll. c:c~>tl. 1R:)l. 31:). IIC also gircls n tnblo for i~ollvertilig g r n ~ i t y   fro^^^ 
1nterllntion:l.l to Hc~lrnc~l-t's 1901 niid Uowie's 1917 for~l~ultv.  

t Ii1111. (:c.od. 1931, :12';. 



longitude term which has provoked considerable cliscussion. From 
equation ( 1 22 ), me see tha t  the coefficient of this term is fq,  
where q denotes the ellipticity of the equator. The difference ( a - b )  
between the semi-equatorial axes, the equatorial ellipticity q and 
t,he positions of the principal axes as given by t'he various formula 
are tabulatecl below : 

a - b  
in metres 

Helmert 1915 230 + 40  
Berroth 1916 150 + 60 
Heiskanen 1924 345 + 40  
Heiskanen 19 2 8 242 + 40  
Heiskanen 1 938 352 + 30 
Hirvonen 1933 139 + 16 

'I 
Longitude Lo of 

major axis 

36 x lo-" - 17" + 6" 
23 x 1W6 -10 
54 x -18 + 5  
38 x 0 + 5  
56 x -25 + 2  
22 x l W G  -19  + 3  

Lo denotes the longitude of one end of t,he major axis, reckoned 
positive east of Greenwich mericlian. 

It may be pointed out tha t  the probable error of Hirvonen's 
1933 result is least, not because i t  is the best determination, hut 
because he used only a few point,s for it.s deduction. 

Several  attempt,^ have been inacle to det'ermine the ellipt'icity 
of the equator from arc measurements. As early as 1861 Clarke 
using three long arcs, t,he Russian, Franco-English and Inclian, found 
hy a least square solution the values for the difference of equatorial 
semi-axes and the position of major axis of the equator to  be 

Using arc measurements in Europe and the United St,ates, 
Heiskanen * founcl 

ct -b  = ( 1 6 5 + 5 7 )  metres, L,, = +38"+10°. 
It has been contenclecl by some geoclesistst, tha t  the actual 

geoicl has a circular equator and that  the longitude term in the 
gravity formulz is introcluced spuriously by the recluction employed, 
namely free-air or isostatic. Macler, by laborious computations, 
proved tha t  if the average height of the continents he taken as 
0 -  8 km., they would produce a - b = 268 metres if they were un- 
compensatecl, ancl rt-b = 278 metres if they were compensated. 
His  figure of 278 metres for the compensated geoid is however not 
correct 1, as he wrongly applied topographic 1.eduction twice in his 
working. 

Jung§  has worked out the effect of different inass types in 
producing the difference (B-  A )  of the principal equatorial ino- 
meilts of inertia of the earth. A brief summary of his results is 
interesting. Taking t,he eartmh to  be non-isostatic, the effect of 
---- - --- 

* IIeiskanen, Veroffen. cles Pinnischen Qeodat. Inst. No. 12. 1929. 
1 Mader, Gerl. Heit. Z. Geoph. 18, 1927, 145-184. 

IXopfner, ,, ,. ,, 20, 1928- 
f. Heiskanen, ibid. 

Jung, Zeit. f. Geoph. Jahr. 4, Heft. 1. 



superposing the contiuei~t~s and oceans on a homogeneous sl,herical 
I4 

earth is to procluce ( R - A j = 5 . 2  x 1 0  c, g. s. The corresponding 
clifferelice in the equatorial semi-axes is ( a-  b ) = 200 metres, and 
L~ = 86'. In other words, the s~perposit~ioii of coiitiuents and oceans 
as a load on a homogeneous spherical earth produces a longitude 
term 4 1  x lo-' cos 2 ( I, - 86') in gravity. 111 this computation, the 
continents are assumed to be of uniform height 0 . 8  km. and density 
3 - 2 ,  and the oceans of uniform clepth 0 . 4  km. and density 2 . 2 .  

For compensated co~it~inents ancl oceans, the correspo~icling 
results on t,he assumptioli of a depth of c~inpensat~ion of 8 0  km. are 

Hence t,he ( n - 11 ) of the compensated geoicl can differ only by 
about 5 or 1 0  metres from tha t  of the actual geoid, and t'his is a 
very small fraction of the amount suggested by t,he gravity formu1:c. 
Prey * also obtains t,he same result for tjhe ellipticit'y of t.he equat,or 
produced by isostatic mass transfers. 

The free-air ancl coildensation reductions have also a negligible 
effect. Hence i t  is impossible to explain the values of ( B-A ) 
derived from gravity formul:~ by assumiilg that  t,hese are falla- 
ciously introduced by t,he reductions employed. 

Several types of density inequalities can 1)e postulatecl to 
account for the longitucle term. Schweyclar has pointed out that  
a tlifference in clensity of 0 . 0 1  between layers 200 kn1. thick uncle18 
the Atlantic and Inclian Oceans woultl produce a systematic term of 
this type with amplitude 56 x 10-G. 

Similarly, Berroth t has shown tha t  if the highlands of Central 
Asia ( considered as bounded by $I = 25' to 50°, a i ~ d  L = 80' to 110') 
had a defect in  clensity of 0 20 up to the depth of compensation, they 
would pr6cluce the above L-term. Of course, the actual obser~~ations 
in this region clo not show such a large defect of density. The 
above only gives an idea of how much mass anomaly is neecled. 

Again, consicler a sphere with a surface coating 011 i t  equiva- 
lent to a t8hickness Yo of mat8erial of normal crustal density 
2 7. We shall see in chap. ~ v ,  para 7, tha t  if this inequalitmy is 
coinpensatecl according to Airy's hypothesis a t  a dept'h of 
compei~sat~ion 35 miles, then AIJ = 0 . 0 0 1 3  gals for Y, = 1 mile. 
If this illequality were uncoinpeiisat,ed, Ay would be 0 . 0 7  gals. 
For an ];-term with an amplitucle of 0 . 0 2  gals t,o be possible 
for an isost,atic: crust floating on a s~bs t~ ra tum,  the solid surface of 
t'he earth must cleviate from a spheroid of equal volume by about 
15 miles, which we do not find to be t'he case in natu1.e. If ~ v e  
assume this harmonic t,o be due t,o tlepartures from isostasy, it, can 
easily be shown tha t  these are equivalent t,o a surface coating of 
thickness of about 2,000 feet of ilorlnal crust'al densitmy. Wide-spread 
- 
%---- . . -. . -- -. 

* Prey, Gerl. Heit. z Geoph. 36, 1932, 242-68. 
t Rerroth, Gerl. Beit, z, Geoph. 14, 1916. 245, 



inequalities of such an extent lead t'o important, physical implications. 
They procluce consiclerable stresses which have to  be boi~ne by t,he 
rocks of eart,h's crust. The problems of the possible magnitude of 
stresses due to visible surface illequalities ailcl the st,rength of the 
earth's crust are of funclainental importance, and have been con- 
siderecl by Darwin* and more recently in  a thorough manner by 
Jeffreys.t There is no means of knowing the exact st,ress distribu- 
t,ion inside the earth, as an  infinite number of stress distributiolls 
can be fotuncl which will support the surface inequalities. 

W e  shall see in chap. IV, para 6, tha t  t,he gravity ailoinalies in 
1nclia:point to the existence of regions where there are clepartures 
from::isost8asy equivalent to a t,hickuess of about 2,000 feet of 
surface roclr. I n  the light of Jeffreys' work such loaclings can easily 
he supported by t,he crust. Difficulties arise, however, ill explaining 
t,he support of loacls of considerable horizontal extent as implied in 
HeisIranen's longitucle term. Jeffreys coilclucles tha t  the inechanis111 
of compensation ( implying, as i t  does, hyclrostatic conditions under 
the crust)  demancls a greater strengt'h in the upper layers than me 
shoulcl need wit,hout compensation. Wicle-spreacl ineq~al i t~ies  of 
2,000 feet of surface rock procluce stresses 'which woulcl require an 
irn1)ossible st(rei1gt.h if t,hey were to  be supported by the upper layers 
alone. They require a strength in the lower layer (i.e. below 50 l k . ) ,  
which cont,rovert,s the popular belief t,hat below 50 lcm. t,here is 
hydr~s t a t~ i c  equilibrium. This is also borne out by the phei~oinenon 
of cleep-focus eart,hquakes. If mat'erials a t  clept,hs beyond 50 kin. 
were entirely clevoicl of strengt'h, i t  woulcl not be possible for t,heill 
to accuin~nulate st'resses, the release of which is essei~t~ial for t'he 
product,ion of an earthquake. A11 alt,ernative inechailisin for the 
support of these loaclings of t,he crust has been brought forward by 
Meinesz.$ It is based on t'he h-ypot,hesis t,hat the disturbances of 
equilibrium are a'clj~st~ecl by convect,ioil curreilts in the substratum* 

J t  has sometimes been argued against the lo~lgitude term that 
the level surface may be a spheroicl, hut being heterogeneous the 
principal equatorial inoments of inertia may be clifferent. I n  this 
case there woultl be a ( B - A )  term in the gravity formula in 
spite of the equator being circular. This is however not possil~le, 
because the potential of a l~etel-ogen~ous body accorcling to  equatioii 
( 1 - 2 4 )  is 

If its outer surface is to be a spheroicl, TJT must become constant 
for ( I - e sin2 fi' ). This can only happen when the longitude 
term is zero. If then a heterogeneous spheroid is to be a figulp of 
equilil~rium of masses withill it, its iilternal masses must be SO 

constituted tha t  the equatorial moments of inertia are equal. 
-- - .- - -. - -. - -- 

# Darwin, Scientific Papers, 2, 481-84. 
t &I, N.R. A. S .  Geoph. Buppl., 3,  1932, 3 0 ;  2, 1932, 60. 
3 Meinerrz, Gravi ty  Expeditions at  Sea, 2, 1923-32, 54. 



Thus, while one caniiot cavil a t  the longitucle term from 
piori  considerations, there is no denying the fact tha t  i t  has nott 

beell strongly determinecl, because the data are confiilecl to  oiily a 
very limited portion of the g?obe. Heislianeil clerived his formula 
( 7 ) of pa,ra 2 from 656 gravlty statioils in  Europe, Africa, America 
and Asia, and fouilcl tha t  the introcluction of a longitucle term [as 
in forinula (8)] clecreased the s u ~ n  of the squares of the anomalies. I n  
1928*, with more clata a t  his clisposal ( 84<1 stations including 137 
sea stations of V. Meii~esz ) he obtainecl formula ( 9 ). His 1938 
formula comprises about double the above number of statio11e.t A 
comparison of the varions forinulx reveals tha t  the amplitude sf 
the longitucle terin is changed f om 19 x lo-" to 38 x 10-5 a11d the 
yusition of the major axis has a range of 4.3'. I i r  view of the above, 
lt is not unreasonable to surmise tha t  wheil hoinogelleous gravity 
data become available over the whole globe, we might get an  
entirely differeilt value for this terin. 

Jeffreys $ argues tha t  oiily t'wo harmonics cosV cos 2L ancl 
cos" sin 2L of the secoilcl degree have been used for analysing the 
observed gravity ailoinalies. The Laplace's function Y, contains 
t'he terms 

15 
- cos" ( 7 s i n e  - 1 ) x 

cos 2L 
2 (sin 2L. 

These' terms give the same kind of variat'ion in the equatorial 
ellipticity as the second order terins 3 cos26, cos 2L, 3 cos" sin 2L. 
If t,hese foul.th orcler harmonics are present ancl are not separatecl 
by an analysis over different latitudes 0, they will affect the estimated 
values of the second harmonic. H e  aclvocates developing the 
expression for gravity in spherical harmonics up to  terins of the 
fourth ordel-, and t,hen applying i t  to ileduce the figure of the earth. 
B ~ l t  Y,, Y*, etc. also contain terms tha t  contribute to equatorial 
elliptic1t.y. The above mill t'herefore leacl to useful results only if Y,, 
Y,, Y,, etc. are iil rapiclly clesceildiilg orcler of magnitude. It is 
harcl to say whether this wonlcl actually be t'he case. The leading 
terms represent inequalities of \vide extent', and their iluinerical 
values may not necessarily be greater t,hail those of t,he succeedii~g 
terms. 

6. International gravity formula. - The formula 
./,L 978.049 (1 + 52884 x 10-7sin" - 59 x i0-7sin" 2 )  was adopted 
at the meeting of the Inte~.national Association of Geodesy ill 1930 
a t  Stockholin as the Interiiational gravity formula. The significance 
of its various terms aiicl the ~nethocl of their clerivatioi~ have heen 
(liscussecl in para 3. The coefficient of the sin' 2 term corresponcls 
to the value of E =&. This value has beell obtainecl from cleflectio~i 
data in U.S., which is ollly 1 - 6% of the area of the whole 
earth. The inail1 coilsideratioll in the adoption of this formula was 
to ensure ~uiiformity in the expressio~i of gravity ai~oinalies in 
tlifferent countries. It is obvious that  the cuinplicated gravity - -- -- - - -- - - - 

" I~risknilen, (4cbrl. Brit, x. Geopl,. I!), 18YH, 3tfi-77. 
t EIcihkanrn, Publicntic,ns of the lbo\t.~tic Ii~htitutc of tliv Intcr11;~ti01il~l lisaocit~- 

tion (>t C~eodesy, No. 1, 193H. 
f Jeffreys, Lferl. Beit. x. Cfeoph. 36, 1931, 210. 



distribution on the globe would require more elaborate formula for 
its adequate representation. For example, the gravity anomalies 
in India basecl on this formula are shown in chart XI, Survey of 
India Geodetic Report 1938. The negative values are strikingly 
predominant, indicating that  this formula does not fit India well. 
Aiiomalies with respect to Helmert's 1901 formula are show11 in 
chart x, Survey of Inclia Geodetic Report 1938, and are obviously 
more balanced. 

I11 East Africa also, Bullard's* work shows that  the Hayford 
anomalies with respect to the International spheroid are precloln- 
inantly negative. A suitable longitucle term call be ii~t~roduced 
to give a positive cor1.ectioii t,o Ag's, so that  the preponclerance 
of negative values is clecreasecl. As it  happens, the longitude term 
founcl by Heiskanen [gravity formula ( 10 ) ] gives such a positive 
correction to the anomalies in India. I ts  value a t  some points is 
t,abulated below : 

Y oint 9 78 - 052 x 28 x 10-"0s ( 2 L + 50' ) cos' # 
mgals 
- 22 
- 18 
- 19 
- 23 
- 24 
- 13 
- 15 
- 7 
- 9 
- 9 

If t,he gravity a~loinalies are reckoned with respect to the 
International formula, the loiigitucle terins of the formula ( 2 ,  
2, 8, 9 and 1 0 )  all give a positive correction of about 18 mgals t o  
the a~iolnalies in India. It is obvious the11 that so far as Inclia is 
conceri~ed, the triaxial formultc will give t,he same anomalies as 
Helmert's 1901 formula, since the value of 12, in the latter formula 
is about 20 mgals less. 

One reason for introducing more harmonics in the gravity 
formula has been already given in the last para. We shall discuss 
this further in chapter v, para 7. With the present gravity 
material however, i t  is not possible to improve on the ~n te rna t ion~ l  
forlnula with any measure of certainty. This can be seen from the 
fact that one obtains widely different results for the longitucle term 
accorcling to the number and locatioil of the gravity stations used. 

7. Summary.-Gravity observations and arc measurelnents 
show that a triaxial ellipsoid fits the geoid better t h a ~ l  a spheroid 
does, hut thc: ellipticity of the geoiclal equator is not paved iiitlis- 
puta1)l.y. This is clue to the fact that the data on which the above fitifl 
-- --- - -- 

* bI.N.K.A.8. Geoph. Suppl., 4, 1937, 107. 



based are too scanty, being derived from only a very limited portion 
of the globe. The International gravity formula is by no means a 
very good fit to  the actual observed values of gravity, as can be seer1 
by the large gravity anomalies in India, Gulf of Mexico, Caribbean 
Sea and t'he East Indies. It shows tha t  more gravity observations 
are l~eeded arid more harmonics should be introduced in the gravity 
formula. Until this is done the question of t,he ellipticity of the 
equator will remain open. 

It is to be remarked tha t  the gravity values used in deriving the 
best gravity formula should be i11 terms of the same or well-connected 
base stations. If for example all  American values were smaller or 
greater t,han European, a n  L-term would obviously appear. 



FIGURES OF EQUILIBRIUM OF A ROTATING 
EARTH, AND ELLIPTICITIES OF STRATA 
OF EQUAL DENSITY INSIDE THE EARTH 

1. Level surface of a homogeneous rotating fluid.- 
I11 the prececling chapter we have found the ellipticity of the level 
spheroicl from the gravity values oil i t  011 the assuinption t'hat the 
bouncling surface of the rotating mass is llearly spherical and is 
a t  the same time an  equipotential. TVe shall no\v see how we call 
cletermine the ellipticity when the interllal law of tlensity is lill0~11, 

If we imagine the earth to  be a fluid, elementary hyclrostatics 
enables us to  write clown the conclitioils for i ts equilibrium. The 
form of i ts free surface can~io t  however be founcl ill general. But 
useful results can be obtainecl by assuming a forin for the free sur- 
face a i d  then seeing whether i t  is a possible form of equilibrium or 
not. The theory is clealt with in the usual text-books. We will 
enumerate here some salient points. 

The usual conclition of equilibrium of an element of a fluid 
mass rotating with angular velocity o is 

4 1 = p  [(X+w2x) d x +  ( Y + W ' ~ )  rZy+Zclz], ... ( 3 . 1 )  
where dp is the resultailt pressure on the element, ancl X +  o?c, 
Y + o", Z are the compoileilts of the resulting force. 

If the form of the outer surface of this fluicl (which is an 
'u2 + lj3 g? 

equipoteiltial) be assumed to  be the spheroid -+ + , = 1, we 
a" C" 

must have 

X, Y, Z are t,he coinponents of t,he force due to a static spheroid. 
Assuming the spheroicl to be of uniform density p aucl substitut,ing 
the values of X, Y, Z ( see chap. I, para 4 ) in ( 3 . 2  ), me obtain the 
following conditions for equilibrium : 

w2 If - > 0 . 2 2 4 7 ,  an oblate spheroid is iiot a possible form. 
2 T.[P 

If --f- < 0 . 2 2 4 7 ,  two spheroidal forins are possible. 111 the 
2 =.fp 

a1)ove; ,f' cleiiotes t,he gravitatioilal colistaiit; its numerical value 
is taken as (i 6 x lopH cm.Vgm. set'. Talring p = .j. 5 g-ln./ciil." the 
limiting value 

27-r ('!'_= 0 - 9 2 4 7  = I t hours. 
2 r r f p  0 



The shortest period, therefore, in which a homogeneous fluid having 
t,he saine mean density as  the earth call rotate uniformly in t.he 
form of a spheroid is 24  hours. 

For the p and o appert'ainiug t'o the earth, two spheroidal forms 
me possible. The larger spheroid has rather a big ellipticity and 
is of no interest from our point of view. The ellipticity of t,he 
obher spheroid is given by 

1502 - . 1 
f=--- 

lG.rr,fp ' 232'  

Modern observations show the ellipticity of earth t o  be in  the 
neighbourhood of &. The large difference is due to  the fact tha t  
t,he eartjh is not a homogeneous fluid mass. 

It is of interest also to inelltion the results obtained regarding 
t,he equili1)rium of a fluid in t,he form of a triaxial ellipsoicl. Jacobi* 
~rovecl that  an  ellipsoid wit'h t,hree axes, t,he smallest of which 
coincicles witch t'he axis of rotat'ion, is a possible form of equilibrium, 
subject to a certain 1imitat.ion of t'he ellipt,icities. If E, 77 denot'e the 
ineridional and equat,orial elliptmicit8ies of a Jacobian ellipsoid, then 
e = . i  h" , q = 4 X I 2 ,  where either X 01% A' > 1. I n  the case of the earth, 
we have roughly e=&, q = O  ( 2)). A homogeneous triaxial ellip- 
soid having the saine ellipt.icit,ies as t'he eart'h is therefore not a 
possible form of equilibrium. For furt,her ii~formation on Jacobian 
ellipsoicl, reference may be made to Da,rrnin's t work. 

The above consiclerat~ions are of a theoretical nature in tha t  
they apply to a homogeneous rot.at,ing fluid. The eart'h, we know, 
is clefinitely non-hoinogeneous. The next step forwarcl is clue to 
Clairaut: who published his book on t'he figure of the earth about 
half a cent,ury after the t'hird book of Newton's Principin. W e  will 
now give an  accoullt of his t'heory, ancl it,s extensioil by Darwin 
and cle Sitt,er. 

2. Clairaut's theory.-In Clairaut's theory, the earth is 
assumed t,o be heterogeneous, but such tha t  i t  is built hydrost,at.- 
ically. This implies tha t  the surfaces of equal density are 
eqilipotel~tials. Strictly speaking, therefore, the theory is only 
applicable below the depth of compensation. It gives t'he ellipt,ic- 
ities of surfaces of equal clensity inside the earth, as well as t>he 
ellipticity of t,he geoicl which is t,he bouilclary surface, provided the 
law of variation of densit,y mit,h depth is known. The following is 
a hrief proof of the well-known Clairaut's clifferential equation. 

Since the eart,h is in hydrostatic equilibrium, there is 110 

sh~ar ing  stress inside. It can he seen easily 4 tha t  such an  earth 
can differ from a sphere hy only a seconrl order harmonic. The level 
surfaces are t'herefore of t'he form T =  k ( 1 + Y ,  ). 

pp - - - . 

" C!lnrlte, Grnclcsy, '78. 
t Darwin, Scientific Papers. 3, 1910. 119. 
$ Clnirnnt,, l'li6nric tlc In f i y u c  dr lix 'l'errc, 17-1.3. 
$ Pmtt, The Figure of the Enrbh, 1865, 78, 



The pot,ential of a heterogeneous body T =. li ( 1 + ZIT,, ) at an 
internal point * ( k,, 8', 4' ) is 

where k is the mean raclius of the outermost surface, a i d  12, is the 
mean radius of the stratum of equal clensity through the point in 
question. p' denotes the value of density a t  the level lc'? and t,he Y"s 
are the same functions of 8' ancl4' as the Y's are of 8 and 4. Taking 
the equat'ion of our stratum to be 7 - =  k, ( 1 -+el P ) and t,he density 
a t  this level t,o be p, t,he conclition tha t  /Ti is constant. on i t  gives the 
equatioii 

r' denot'es the ellipticity of the level surface having the mean 
raclius k'. I n  the derivation of the above equat,ion, quant'it,ies of 
0 (e:) have been neglected. Different,iat,ing this twice with respect 
to li, ancl simplifying, we have 

where R ( k1 ) = 3  p'lc'?clk', ancl X . ,  is the mean 1-adius of t.1)~ level J: 
surface whose ellipticit'y is E,. 

This differential equation call also he obt,ai~led by utilising 
the condition that  the gravity vect,or a t  ally l3oint of a level surface 
is along the normal. 

The exact manner of distribution of clensity inside t,he crust is 
not known, but assuming t,hat i t  increases as we go towards t ' h ~  
centre of the earth, i t  can he seen? from equation ( 2 . 4 )  that E 

decreases as we go clownwarcls. I n  other wortls the level surfaces 
11ecome more ancl more spherical as we approach t,he centre. 

To make equation ( 3 . 4 )  integrable, several transformat~ions 
have been used. W e  will mention only the elegant t8ransformatio!l 
of Radau: (1  8 8 t ) ,  which gives some very important results. He 
int,roduces a variahle q 3 defined by 

- - -- - -- - - - - _ - - - _ -  --  - -  
* Pul~nth. Analytical Statics, vol. 11, 5 29'7. 
t .IvtTrcnyq, ' I ' l i~  Earth, 1929, 211. 
f ( ' o~r ip t (~  Hc.ndrlr. 100, 1885, 972-77. 
9 'l'hin I )  should not be wnfueed with the equatorial ellipticity of the geoid. 



where M, C are the mass and moment of inertia ( about the axis of 
1-ot.at,ion) respectively of the matter enclosed by the surface. If the 

C density clistribution inside the level surface is known, Mk,"ai~ - be 
1 

computed and from i t  q obtained by equation ( 3 6 ). Knowing q, 
WP call get r, a t  any depth by integrat,iog the differential equat,ion 
( 8 . 5  ), VIZ. 

df, - dkl -- 7 .  
k ,  

Assuming the e1lipticit.y of the outsside surface to  be 0 , 3 3 7  x 1 0 - 2 ,  
wid inferring the deilsity distlbibution by a trial and error method 
from a study of near earthqualres and the surfaces of cliscontii~uit,~, 
Rulleu* gets the following table for r, a t  various depths d. 

Fnr t , h ~  paid the b ~ l i ~ t i c i t y  E can he ohtailled Ei-om a k ~ l o ~ v l ~ t l g r  
C - A  of thc p1.ec~ssional constant I 1,y means of t,he equat,ioil 

( 

where 
- - - -- - - 

* M. N. R. A.  S. CSeolh. Suppl. 3. 1936, 395-,401. 



I n  the derivation of Clairaut's equation, terms of 0 ( 2 )  were 
neglected. Darwin* and de Si t ter t  have extended Clairaut's t,heory to  
terms of secoild order. Their method is idei~tical with tha t  of Helmert, 
already described in  chap. I, para 6. The external potential of a body 
symmet~rical with respect t'o i ts axis of rot,ation inay be written as 

where K and D are two constaut~s characterist,ic of t,he body, as we 
have already seen. This equation holcls irrespective of the intel-nal 
const,itution of the body. If t,he body is an equipotent,ial surface, 
i ts  equation will be 

Gravity on this surface is 

y = (7, ( 1 + ,B sin" + y sin2 28 ) , ... (3 .11)  

where Ci,, is given by equation ( 1 - 41 ), 

and 5 17 B = m-e- - 2 
- 14 em- ,X ,  I 

The constants R and D occuri.iug in the expression ( 3 - 9  ) for t$he 
potential can also be expressed in terms of e a i d  m as 

Tn chapter IT, the values of ,B, y cleclucecl by least squares from 
the available gravity data were used for determining E. Equation 
( 3 - 1 4 )  afforcls a more accurate method of clet~rmining the ellipticity. 
The constants K aild x occurring in i t  are obtaineri froin the 
fnllnwing consitlerations : • 

;3K - 3 C'-A 
2 a 2  21~~' 

= q H  ( s ay ) ,  

where C - A  H Y -  
C 

-- -------P-----~ - 
* Darwin, Scientific P,xpers, 8, 1910, 78-118. 
t L)c, Bittc*r. Prop. of the  R. Acnd. of Sc. nt Amsterdam, 17, 1915, 1296. 

,, Dull. of the Aqtron. Inst, of the Netherlands 55,  1924, nnd 129, 195- 



H is known by observations. Taking the ratio of the mass of the 
1 1 

inooii to tha t  of the earth as 1 = 8 1  50 + 0 .07  + L, de Sitter* 
P AP 

obtains the expressioi~ for H froin the Constant of Precessioii to  be 

'1 mi1 011ly be obtainecl by making some sort of assuinptioil 
about the iiiternal constitutioii of t,he bocly. 011 the hydrost'atic 
hypothesis, de Sitter fouiicl 

He provecl t,hat this value will change by ail iilsigilificailt amount 
if the earth were isostatic, or even non-isostatic. 

It ilow remailis to assign some value to the secoilcl orcler term 
x in equatioil ( 3 . 1 4 ) .  Assuming Roche's law of deiisity viz., 

po = p [ 1 - Ic ($)'I where p, is the ineaii density of all matter 

lying iiisicle swfade a, Darwin t obtained x = - 204 x By 
1Vieche1.t'~ hypothesis, which assumes the earth to consist of a 
i~ucleus of radius roughly $ of tha t  of the ear th a i d  density 8.206, 
aild a top layer of deilsity 3 . 2 ,  he got x = - 168 x The 
iilaxiinuin change in the raclius vectol. of t'he level surface due to 
these wiclely different laws of cleilsity is about 4 metre. The effect 
on the ellipticity woulcl be neglig-ible. 

Taking x = - 204 x and in = 0 - 003467753, de Sitter 
obtained 

In a later paper f he revisecl his value of H to  0.0032770 ancl 
cleduced 

He claimed t,his value of E to be much illore trustworthy than any 
clerivecl froin geodetic operations or from the inot'ioil of the moon. 

3 K  
I11 t,lle coinputation of - = pH, cle Sitter takes the value of 

2 n2 
as given by t8he astronomical ~bservat~ions f 01. precession, a1111 

clerives (1 froin t,he assiunptioii of a hydrostatic earth. He  assesses 
the inaccuracy of clue to this assumption which does not cor- . --  sit, l'esponcl with facts. Jeffreys $ gives a inethocl for determining - - ., 

2 a- 
which is free from the above objection. His lnet,hod consists in 
ol)scrvii~~. the siclereal i n o t i o ~ ~ s  of the inooii's iiode a i d  perigee, slid e 
the i~~cl i i ia t io l~  of the inoon's axis. The first two depeiid 011 t,hrec 

* Bull. of the Astron. Inst. oE t,hc Nethurlnnds, ; m i ,  192 1.. 
t I)i~r\\~in, Scientific piLpors, 3, 1!410, 97. 
$ Ibid, 4, 1927, 57-61, 
$ M.N.R.A.S. Geoph. Suppl. 4, 1935, 1-18. 



3 K  
constants - J' and K', where 

2 a3 ' 
3 K -  S 2 C - A - B  ---. 
2 2  2 Mn"- 1 

The accentecl letters in these expressions refer to the movll. The 
iliclinatior~ of t,he moon's axis clepends 011 J' aiicl K'. Observat,io~is - 

3 K  
of the above three motions enable us to solve for s, J' a1111 I [ ' ,  

Jeffreys obtains 

which cor1-esponcls to 

-- I - 2 9 6 . 3 8  & 0 . 5 1  
f 

and is regarded as the best determination of E a t  the present t,ii11c1. 
Also according to Jeffreys 

p = 0 . 5 0 1 7  + 0 . 0 0 1 8  
and according to de Sitter ... ( : 3 . 2 0 )  

q = 0 . 5 0 0 7  + 0 . 0 0 0 0 8  
Jeffreys' y-formula corresponding to e as given by ( 3 . 1 9  ) is 

Yo = 978.051 ( 1  + (5282 + 6 )  x 10-6 sin2 4- 7 x 10-6 sin2 2 
and de Sitter's formula is 

3. Summary.-A static homogeneous oblate spheroid and 
an ellipsoicl with unequal axes cannot be level surfaces of their 
own attraction. A homogeneous rotating fluicl in the form of a 
triaxial ellipsoid having the same axes ancl rotational velocity as 
t'he earth cannot also be a surface of equilibrium. A11 oblate 
spheroid is however a possible form of equil'brium of such a fluid, 
the ellipticity depending on the density and t k e rotational velocit~. 
The ellipticity of the earth deduced on the basis of a homogeneous 
rotating fluid is about 20 % greater than that indicated by other 
considerations. 

If the oblate spheroid is heterogeneous and is a surface of 
equilibrium, its external field call be determined as in chap. I, 
para 6 without a knowledge of the internal mass distribution. 
Conversely the ellipticity of such a spheroid can be determined 
from gravity formula: deduced by least squares. Alternatively, 
E can he derived by Clairaut's, Darwin's and de Sitter's theory. 
Cleiraut's method utilises the expressiori for the internal 
and is applicable to e hydrostatic level surface. It only takes 



illto account terms of the first order in ellipticity, arid its application 
to the actual earth is limited to depths below 40 km. or so. Darwin 
and de Sitter have developed Clairaut's theory to terms of order ez 
starting from ail expressioii foi- the extel.na1 potential without 
inaki~ig ally assumptioil about the i~it.ernal density distributiori. 111 

tletermining t'he ellipticity they had to coii~pute a constant ou the 
assumptioil of hydrostatic stress i11 the iilterior. This assumpti011 
does not accord with facts. Jeffreys has got over this difficulty by 
inferring this constant from the 111oo11's lnotioii without referei~ce 
to ally hypothesis about the iliteriial state o f  t<he earth. 



GRAVITY ANOMALIES AS A MEASURE OF SUB. 
TERRANEAN INEQUALITIES OF DENSITY 

1. Compensation.-It is ilom an accepted fact that the 
larger features of visible topography are coinpensated in some form 
or other. I n  1854, Pratt published a paper in the Philosophical 
Tra,nsactions of the Roya.1 Society, in which he calc~~latecl the plumb- 
line deflections due to the Himiilayas a t  three statioils (Kaliina, 
Kaliiinpur and Diimargida) of the Great Arc series of India. He 
found these deflections to be greater in amount than their observed 
values. This led him to formulate his theory * of compeilsation, 
namely that the irregularities of mountain surfaces have arisen 
from the vertical expansion of the earth's crust from clepths below. 
In this way the surface features get underlain by masses of 
deficient density. 

Hayford t in 1912 gave a practical shape to Pratt's theory of 
compensation and 'published tables, by which the effect of topogra- 
phy and compensation on the value of gravity a t  a station could be 
computed. He assumed that the total mass in every unit vertical 
column (whether under the oceans or the continents j down to a 
certain surface called the surface of compensation, is the same. 
Each column is supposed to be in independent equilibrium. The 
Hayfordian hypothesis cannot, however, be mechanically true, as it 
assumes point to point compensation, which implies that the earth's 
crust offers no resistance to deformation. Geologists have always 
regarded i t  as a mathematical abstractmion, but we shall see later that 
i t  can give very useful results. 

Airy $ propounded a hypothesis in 1855 that mountains and 
plateaux have roots below them penetrating into the cleilser substra- 
tum, the whole block floating in hydrostatic equilibrium. This 
hypothesis accords approximately with moclern conceptions of the 
constitution of the earth and has found more favour than Hayford's. 
Heiskanen 4 has brought out tables for this.hypothesis of compensa- 
tion. He assumes the thickness of the crust corresponding t,o zero 
elevation of a region to be 40, 60, 80 ancl 1001rm., and the difference 
of density between the crust and the magma in which i t  is floating. 
to be 0 . 6  gm. /~m.~ .  

It is universally agreecl now that the compensation cailllot be 
local in nature and that some form of regional compe~isatioll 
ehoulcl be macle the basis from which gravity aiiomalies shoulcl be 
-- . -- 

*Phil. Trans. of the Royal Soc. of London, 1859,'i.Ej. 
+Hayford and Bowie. The Effect of Topography and I s o ~ t ~ t , i ~  C O I I ~ ~ I P ~ H ~ I ~ ~ O ~ ~  

Ikpon the Intensity of Gravity, 1912. 
f Phil. Trans. of the Royal Soc. of London. 146, 1855. 
§Bull. U-eod. 1931, p. 110. 



V. Meinesz has produced tables based on the idea tha t  
for each topographic feature dm there is a corresponding compensa- 
tion at a depth of 30km. extending laterally to  radius R. His tables 
t,alre into account values of R ranging from 0 to 232.4Okm. As 
another variety of regional compensation of topographic inequalities, 
V. Meinesz*, assuming the earth's crust to  behave like an  infinite 
elastic plate of const,ailt thickness 25km. floating over a magma, 
whose density is greater than t h a t  of the crust by O a G 3 ,  'has 
producecl tables for the following cases:- 

( i )  Crust is of constallt density, and compensation is concen- 
t,rat,ecl a t  the junction of the crust with t,he magma. 

( i i )  Compensation is uniformly distrihutecl throughout the 
25 kin. clepth. 

Seisinological evidence shows tha t  the normal structure of the 
eart81i's crust is by no meails homogeneous, but' consists of three 
layelus possessing clifferent physical properties. The interfaces of 
thew layers, accorcli~~g to Jeffiseys t, are about 10Bin. and 30kin. 
helow sea-level, the cliscontinuity of densities a t  these layers being 
about 0 .2  ancl 0 . 5  gin./cm.3 respectively. Modern theories assume 
that compensation is confinecl t,o the interfaces of these layers. I11 

view of this, not much interest attaches to the controversy which 
raged a t  one time as to  whether Hayford's or Airy's hypothesis 
accorcled better with the observed gravity anomalies. 

I11 the early clays, all discussio~ls on gravity were based on 
Hayford anomalies, since tablest on his hypothesis only were avail- 
able. These tables hold only for perfect compensation, the depth 
of coinpensatioil being assumecl to be 113 .7  km. and the mass of 
compensatioil being taken to be equal to  the corresponding topo- 
graphy. More general tables have now been brought out in Italy 4,  
which can be used both for Pratts' ancl Airy's types of coinpeil~at~ion 
for ally reasonable depth of compensation and t,hickness of the crust,. 
Also, great strides have since been made in producing t,ables on 
other hypotheses, ancl the Isostatic Institute of the International 
Union of Geodesy a t  Helsinki has computed the anomalies on as 
inally as t,went,y-one different hypotheses and in its publication No 5 .  
1939, results have been published for 3758 gravity stations. More 
work is, however, neeclecl in t'his direction, as there are some useful 
recluctions for which no t'ables have been worlsed out ; for example 
the inversion 1.eductioi1, which possesses the property, tha t  i t  get's 
rid of the protruding masses above the geoid in such a way tha t  the 
nat'ural geoid continues t'o remain the level surface of the new mass 
distribution. 

'H1111. Gcod. 1931, No. 29 
t Jrffl.rys. "Thc Earth", chap. VI. A nlortl reccnt discu~sion on this stibject is 

:.ivrn in M. N. R. A.  S. Gcopl~. Suppl. 4, 1937, 210. 
1 Hayford and Rowic.. Tllc Effect of Topography and Isostntic Compcnsntion 

ul"n the Intensity of Grnvity, 1912. 
$ Cassinis, Dorp, rind Ballarin ; Tnvole foundnmentnli per l a  ridnzione dei vnlori 

ossclsvnti dclln gravi t i .  Pavin, R. Colnmissiolle gendeticn itnliana, nuovn serie. No. 13. 
27, 1937, 



2. Gravity and geology.-It has been founcl t ha t  no matter 
what theory of compensation is adopted as a working hypotheeis, 
there are certain regions where considerable gravity anoinalies per- 
sist. An important use of the gravity anomalies is t,hat they give a clue 
to  these disturbed areas. As examples of such areas may be inen- 
tioned Peniilsular Inclia, Ferghana Basin, Japan, Dutch East, Indies, 
the  Caucasus, Carribean Sea, the great, ocean deeps, the oceanic 
islands and the African Rif t  Valleys. 

It will not be out of place t,o give a brief account show in^ how 
the gravi1,y anomalies have helped to  elucidate t,he g~ological l~ist,org 
of these regions, and have thrown light on the folcling lines of the 
crust. It might be added tha t  t'he shape of the geoicl declucecl from 
plumb-line deflect.ions can give a valuable co~lfil.mation of thc 
results deduced from gravity anomalies. These ~leflect~ions are 
integrated along the meridians ancl parallels, ancl the ~eparat~ion of 
the geoid from i ts  reference spheroid is clet,erminecl. If we do t'he 
same with Hayford resicluals, me get  the coinpensatecl geoid which 
is a level surface of t,he anomalies from Hayford's h~pot~hesis.  The 
uildulatioils of t'hese geoids yield very valuable ii~forinnt~io~l nhout 
t,he nat,ure of compensation in an  area. 

! t h e  Hidden Ranye.-In India, from a discussion of t,he pluinb- 
line deflect,ions, Burrarcl* came t,o the conclusion as ea,~*ly as in 1901 
tha t  there were import'ant sub-crust'al features which greatly modified 
the effect of the Himalayas. He  post,ulat,ecl t,he existence of a sub- 
terranean chain of rocks in Cent,ral India, running east and west,, 
which caused t'he plumb-line deflections on eit,her side of t,his area, t,n 
be in opposite directions. This "Hiclrlen Range" has been clearly 
l~rought  out by modern work based on the deflect,ions of plumb-line 
ancl gravity. Charts x and XI, Survey of India Geodetic Report 
1938, show the gravity anomalies in Inclia wit'h respect t'o bhe 
Helmert and International spheroids respect~ively. I n  Chart x. 
there is a wide belt of positive gravity ai~oinalies running right 
across India from the Bay of Bellgal to Kariichi. Chart XI shows 
the same feature but  not to such a markecl degree. This is due to t'hc 
fact tha t  the Int,ernatioiial formula makes Inclia a region of pre- 
clolninantly negative gravity anomalies. Bullarcl fonncl the saine 
thing in East Africa, and i t  is possible tha t  this formula, while 
good enough for discussing anomalies of t h ~  eal-t,h as n whole, is 
not suitable for application to limited areas. 

It is obvious from Chart x, tha t  gravity observations in the Bay 
of Bengal ancl Arabian Sea are necessary to delineate the extensioll 
of the Hidden Range. Another reason why a knowleclge of Ag's 
i l l  these regions would be welcome is tha t  the geoicl 111 India as 
deduced from plumb-line deflections shows a clifference of about 
150 feet a t  two points on the same parallel of lat,itucle 12' at 
longitudes 80' and 98'. A corroboration of this extraordinary rise 
with the help of gravity clata woulcl be vpry i ~ ~ t e r e s t i i ~ g .  

.- -- - -  _-- - - 
* Flnrvey of Inditt,Profeesionel Paper No,_6. 



A feature of the Hidden Range is t,hat i t  is flanked on both its 
north and south sides by areas of defective gravity. To the north, 
the Indo-Ganget,ic plain bet,ween Agra a i d  Jalpaiguri is a region 
of low gravity anomalies. This area is filled mit'h light alluvium 
having a density of about 2 . 2  gm./c~n'~.  and a t  first sight i t  appears 
as if this must be t'he cause of the negative anomalies. A little 
comput,ation shows, however, t'hat t,he t,hickiless of seclirne~lt~s requir- 
ed to produce t'his effect woulcl have tto be enormous*. Varions 
theories have heel1 aclvailcecl about the origin of this Gaagetk 
trough. It ma's once t,hought tha t  i t  is a V-shaped r i f t?  about , ten 
miles deep, producecl by the opelling of the crust under tension. 
This t,heory has not received general ~ccept~ance.  geologist,^ iiomr 
believe t'hat t,he Himilayas :~ncl t,he Gangetic trough have hot,h 
arisen from the maves of tect,oilic folcling froin t'he nort'h. These 
waves created in front of the rising inount'ain a del,ressioa of t,he 
iiabure of a ' fore-cleep '. 

Glennie 1 has put  forwarcl the crustal vrrarp theory to ex l~ la i i~  
the tectonic features of Inclia. According to this, gravity anomalies 
are clue to  cleviations froin the normal arl.xngeinent of the t111.ec. 
layers coinprisiilg the earth's crust. Fig. 1 shows n clowiiwarp. 
Wheil the intermediate layer is pressed into the dunite, th r  latter 
being plastic is raisecl up a t  t,he edges. Negative gravity anomalies 
inclicatr a downwarp, a i d  positive ones an upwarp. 

Gleililie has suggested that  uncler the Gailgetic Plain is the 
southern mnl.gin of the great geosynclin~ which forinecl the basin of 
the Tethys. The fol-ination of this geosyncline illrolvecl a cleep- 
seated clown-1var1)ing of the earth's CI-ust, alld the Hiclclel~ Range 
marks the line along which the 1)alancing uprise took place. 

Dutclt E a ~ t  Iqtc7ies.-Gravimeti-ic observations of t,llis region 
were inacle by V. Meiileszt in 1928 and 1932. H e  foullcl n narrow 
strip of strong negative anomalies cliffering by about 200 ingals 
froin t,he neighbouring posit,ive anomalies. As in the case of the 
Hidclen Range this nega.tive belt has 110 clirect con11ect.ion mit,ll 
t'opography, as it. passes soinet~iines over submarine islailds ancl 
s~lnet~iines over deeps. It runs parallel tlo the west coast of Suinat,rn 
and has been delineated up to the parallel of 5'. Observat~ions are 
needed in t,he Bay of Bengal to show whether t.his joins up with 
the defect.ive area to t'he norbh of Maclras, or nrit'll t,he negat~ivc. 
st'rip near Diamond Islailcl and Bassein. 

It is a remarkable featcure t,hat this negative strip goes by t,he 
side of t,he 3Iii1clanao trough a i d  ilot direcbly over it,, although this 
trough has clepths of over 8000 metres. The same characterist,ic is 
observed in thc Nares cleep ill the Atlantic. Here also the axis of 
the ridge of negative anomalies is not exact1,y above t,he deep, but is 

-- -- -- . .. 

"A parallel case is that of the Afric:i.n rift v:~,lleys discnsscd by I3nllard in tlw 
Phil. ' ~ * R I I S .  of tht: Royal Soc. of Lonclon, 10th Aug. 1936. Hcrc ngnin the Ay'9  nrc 
n+'E;lt,ive, but arc not s o l ~ l y  drle to t,he light sediments a t  t l ~ c  top. 

tSurveg of India, P~ofessionxl P;~l>er No. 17, p. 15. 
f Survcxy of Indin, Pt~ofc~ssic~nnl Pnyrr No. 27. 1932. 
§Gravity Expeditions fit Sea, 2, 1923-32, 



shifted uilexpecteclly towards a neighbouriilg islailcl ridge. The 
above are indicatioiis of some phenomena going on inside the eal.t'h's 
crust. 

V. Meinesz* offers a physical explanatioii of these strong 
negative anomalies by his so-callecl buckling hypothesis. He con- 
siders these areas t'o be regions of mountain format,ion. What is 
happening is, tha t  the lancl a t  A and B in Fig. 2 is ~ubject~ecl to 
compressive forces which produce an  upwarp C. Due t,o t.he e~lormous 
compressive forces t'he crust gets crushed, and like a float,ing iceberg 
has a much greater hump D dowll in the magma than above sea- 
level. This sub-crust,al hump of lighter material is responsible for 
the negative anomaly. 

The buckling hypothesis t,hus postulates tha t  the folcling of 
t'he crust forces light lnat't,er into the magma, ancl in regions which 
are tectonically act,ive this ~voulcl give rise to  anomalies. This 
hypothesis is not very clifferent from t,he crustal warp hypothesis. 
V. Meinesz t has supplemei~t~ecl the above hypot'hesis by p~st~ulating 
the e~is t~ei lce of forces ~ x ~ r t . e d  on the crust by t'he magina, due t o  
dynamical processes in this sub-crustal layer. The horizontal 
gradient. of t8einperat'we a t  the lower hounda.ry of the crust sets up 
convection currents, and he finds the effectof t,hese wit'h t'he help of 
equations of motmion for viscous fluids. 

The Atlccl~tic Ocea7t.V. Meiilesz found t'he anomalies over a 
great part of t'he At,lantic Ocean to be positive. Their mean 1-dues 
by Hayford's, Heiskanen's, and V. Meinesz's hypotheses are + 36, 
+ 32 ancl + 38 mgals respect'ively. The existence of t'his posit,ive 
aiiomaly over such a wicle region is yet, to be explained a i d  will 
throw much light on t'he problem of oceanic st'ructure. V. Meinesz 
has offerecl some tentative explai~at~ions ancl has discussecl the 
relations of the gravit'y ailoinalies with the micl-Atlant'ic ridge. 
Such a. mid-oceanic ridge is also postillatecl with a fair degree of 
certainty by t,he oceanographers in the Inclian Ocean. The plaocess 
of the formation of such ridges is yet, an unsolvecl problem. 

It is to be remarked that conditions in the At,lantic are not similar 
t,o t'hose in Net,herland East Indies, t>here being no strip of ne~ative 
anomalies. V. Meiilesz coilclucles fl-om t,his t,hat t,his region is not 
t~~ctonical lg  act.ive. 

F e r y l ~ c t ) ~ ~ ~  Bnsi9a.-The Piinir region in lnidclle Asia is of great, 
interest, and has been specially chosen by t,he Isostatic Inst,it,ut,e of 
the 1ntel.national Assoc.iation for further stucly. The free-air gravity 
anomalies a t  some of t'he st,ations in Chis area are of the orcler of 
-150 mgals. Bot'h the Bouguer and free-air al~omalies in this 
extensive region, covering an area of ( 5' x 4' ) i.e. about, 70,000 
square miles are genel-ally negative, and they become great,est ill 
t,he Ferghaila basin. Erola 1 has worlrecl out isostatic anomalies 
-- 

* Gravity Expcclitions at Sea, 2, 1923-32, 118. 
t Ihid, 54. 
f Publications of the Isostatic Institute of the International Association of 
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for this region on ten different hypotheses. I n  each case he has 
correlated Ag with the height of the stat,ion, first by omitting 
st,ations of the Ferghana Valley and secondly by taking all the 
stations. Using the criterion tha t  tha t  hypothesis corresponds best 
to the actual shucture of the earth's crust, which gives nearly a zero 
coeficient of the height term, he gets the thickness of the crust, 
to be 35 km. when all stations are taken into account, and 22 km. 
when stations of the Ferghana valley are omitt,ed. 

D. Muschketov* has suggested tha t  the negative gravity 
al~oilialies in Ferghana Valley point to a recent rising of t'he whole 
region. These negative anomalies from India t,o Kasakstan confirm 
the opir~ion of the  geologist,^ tha t  t,he mo~ultain system of PLmir- 
Alay has a large recent epirogenetic rising. 

Ajricwt~ Rijt Valleys.-Several theories have been advanced by 
geologists about the origin ancl histoi-y of the Africa11 Rif t  Valleys. 
To distinguish between the various hypotheses, Bullarclt in 1933 
cal.ried out a gravity survey in East Africa. He  worked out the 
anomalies on seven clifferent hypotheses, ancl inferred froin them 
that the African plateau is on the whole in isostatic equilibrium, but 
that the Rift  Valleys are underlain by matter of deficient density. 
He came to the conclusion tha t  Gregory's theory, tha t  Rifts are 
caused by tension in the crust followecl by fractui-e, is not true and 
developed Wayland's suggestion that  the Rift  is formed by folding 
ancl faulting under compression. The light surface matter gets 
thrust into the magma when the bloclr between the fractures is 
forced down. 

Later in 1934, Horsfieldf took observations a t  some Inore 
stations in the Tanganyika Territory and found the same close 
association between the Rift  Valleys and the negative gravity 
anomalies. 

The Red Sea had been always r e ~ a r d e d  as a part of the system 
of Rift Valleys. V. Neinesz's observations, however, showed gravity 
to be in excess in this region. Observations on land on both 
sides have shown tha t  the isostatic anomalies are positive over the 
Red Sea and its coasts, but these anomalies do not extend much 
inlaad. The gravity anoinalies thus do not lend support to the 
view that  the Red Sea is a part of the African Rifts. It is under- 
lain by heavy masses, and may not even have been formed a t  the 
same time. 

Owel--cornper~satior~ i r ~  rnour~tair~oz~s ft-ey iow-A question of 
some interest is whether there are any mountainous regions of the 
globe which are over-compensated to such an  extent that  the 
geoicl is depressecl there. With the data available so far the 
answer to this seems to be ill the negative, although there are some 
mountain stations a t  which the Hayford anomaly is negative, 
indicating over-compensation. For instance, to the north of 

* Angew. Geoph. vol. v, 1936. 
t Phil. Trans. of the Royal Soc. of London, 10th Aug. 1936. 
$ M. N.R. A .S., Geoph. Suppl., Jan. 1937, 94. 



Kashmir, the Hayford gravity anomaly a t  Depsang is -64 mgals, 
and a t  Yiirkand - 67 mgals. This question has beell discussed 
by the author *, who consiclerecl the data in several r n o u l ~ t a i l ~ ~ ~ ~  
regions of the globe aiicl inferred that if the geoiclal elevatiolls are 
taken with respect to the spheroicl fitting best the area in question, 
the geoicl follows the topography. Anot,her confirmation of the 
above result is afforclecl by gravity ineasureine~~ts in Cyprus by 
Mace t. Observed gravity is fouilcl to be much in excess of what 
can be expected from topography. Correction for topography and 
compeilsation increases the cliscrepaiicy between observecl ancl iiorinal 
gravity. The mountains of Cyprus far from being over-compensated 
have a great mass of heavy rock beneath them. 

The thickness oj' the  en~th's crust.-Gravity aiioinalies call give 
an irlclication of IT, the thickness of the earth's crust. Heiskaiienf 
has computed the anolnalies on several hypotheses and has utilized 
the criterion that the value of II' which gives the least values of the 
anomalies is the best. He coiicludecl that the thicklless of the cl.ust 
corresponding to zero elevation of the ground is 30 kin. ill West 
Alps and Norway, ancl PO to 50 km. in U.S.A. Taking into accow~t 
the actual mean height of topography, the values of T work out to 
about 40 km. in West Alps ancl Norway, and 50 to (50 km. in U.S.Ao 
Bullard S) has estimated the thickness of the crust in East Africa, 
and Erola 1) in the neighbourhood of Ferghana basin in midclle Asia. 
I n  the latter region the thickness of the earth's crust correspondiag to 
zero elevation of the topography appears to be 25 km., and under the 
neighbouring mountains which are about 3,000 metres high, it is 
about 40 km. These results are in accorcl with the evidence afforded 
by the study of earthquakes, and have led to the gradual crumbl- 
ing away of the earlier belief that the thickness of the crust is of 
the order of 1,000 miles. Care, however, is needed in defining the 
meaning of the earth's crust. Modern theories about the constitutioll 
of the earth imply that the crust consists of upper layers floating on 
a denser substratum which is supposed to be in hydrostatic ecluili- 
brium. The thickness of the upper layers is taken to be about 
40 km. It might be mentioned, howevel-, that the concept that 
the.re i s  no strees difference below this depth is not rigidly correct. 
The evideece of gravity anomalies and of deep-focus earthquakes 
shows that the lower layer is not completely devoid of atrength. 

3. Definition of gravity anomaly.-Strictly s~eakillg a 
gravity anolnaly shoulcl be the difference between observed and 
theoretical gravity, both heing referred to the same surface. Such 
an anomaly will clepencl on the normal gravity formula usecl and 011 

the clifference l~etween the actual ant1 assuinecl mass distributiolls. 
In actual pract ic~,  however, observecl gravity y on the earth is reducecl 
to the geoid while the ilormal gravity y,, refers to the reference 

- 
- - - --- 

*R. L. Galatc~c~, Proc. of Imp. Acad. of Sc. Rangalot-rl. Vol, v, March 1937. 
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sm.face. The anomaly g -7, is therefore not a true gravity anomaly. 
It is a conveiitio~ial anomaly, and is partly due to the difference in 

bettveeii the geoicl aiicl its refel-ence surface, ancl partly to 
the intervening masses between the two surfaces and to  the different 
mass distribution insicle the two surfaces. As an example, consider 
the usual Hayford's gravity anomaly ( 9 ,  - 7, j. The observed value 
of gravity on the earth is reduced to t'he natural geoid, this being the 
surface to which the elevations on tlie ground are referred. Data 
is generally not available to reduce observed gravity to the level 
of the reference surface. Since g, refers to the geoid we see 
that the usual isostatic anomaly (g,-7,)  is not a true gravity 
anomaly. Wi th  the help of tables* giving the separation zc between 
the natural and isostatic geoids, we can obtain the reduced value 
g,' on the compensated ~ e o i d .  (g,' - y o )  coi~tours are drawn ancl 
are generally used to incllcate areas of mass excess or defects. If, 
however, the separation N between the compeilsatecl gcoicl and its 
reference spheroicl can amount to + 1,000 metres, as some geodesists 
affirmt, these anomalies will be useless for such a cliscussion. Eve11 
if g,' be corl-ectecl for this N by free-air reduction by the addition of 

2gN a term - , the position will not I,c quite satisfactory, as there would 
CC 

still be considera1)le masses intel~eri ing between the ~ e o i d  and its 
reference spheroid whose clirect effect must be taken lilt0 account. 
The free-air term has been a subject of much controversy as i t  has 
been claimed by sonle that i t  is responsible for the major part of 
the gravit,y anomaly. 

A point worth remembering is, t'llat this height correction when 
applied to the conventional uiioinaly has a teilclcncy to inci.ease the 
anomaly algebraically. Experience shows that  gcnel-ally regions of 
positive gravity values are associated with an elevatecl geoicl, and of 
negative gravity ailomalics with a clepi.essecl geoid. ( g,. - yo ) and 

?@?! have therefore the same sign on the whole, and onc cannot 
a 

explain away thc coiiveritiorial ailomaly by t,his so-called indirect 
effect. 

4. Direct and indirect effects.-A mathematical expres- 
sion for the conveiltional anomaly1 ca.n be obtaiiied ill the followiilg 
way :- 

Consicier a reference sphei-oid, gravity y ,  011 which is known. 
Suppose we put on i t  a coat,il~g of surface density u, whose potent,inI 
at an external poilit is 8. Let gravity oil thc level surface, which 
has the same potential as the rcfcrcwce su~.facc, he !I. Our prol)lem 
is to find an expl.essi011 for bhe nt~olllctlg ( !I -y,  ). 
--- - ~ 

* U.S. l)cp:,,rtliicnt of C , I I I ~ I I I I ~ ~ C ( > .  ( ' # ~ : ~ s t  : M I ~  (.:(,otl(xtic S I I ~ V ( ~ Y .  Sp. 1'11blic:~tioll 
No. 1!49, lax;. 

t i~clzc~rl, %pit, f .  0t~ol)hyo. 0, l!):l;i. I~~(lt,rott~g(,r. %it f .  (:t~ol)li.vs. 10, (I!):< k ) ,  
P. 24t;. l'hc g(!ncr;~l t~pillion now is t1~1.t tllc. sq~:irnt.i~m l ~ \ t \ \ . c ~ 1 1 1  tllc. t\\.t~ s ~ l r f : ~ c ~ ~ a  
can nu~tbn~\t at  ~ I I C  I I ~ O S ~  t,t) 300 f c ~ t .  

f Hcllncrt, 1Iuhorcn Ucodiisic. 11, 1). 259. 



If W is the external potential due to  the spheroid anel coating, 
and 17 the potential due to  the spheroid, we have 

W=U+S.  
Gravity a t  a point G on tshe level surface ( Fig. 3 ) is 

= - (z)G, 
and a t  the corresponding point P on the spheroid is 

The conventional gravity anomaly is 

W e  make the approximation now, that, 

where 6r clenotes differentiation along t,he raclius vector. 
To see the justification for this, supposc thc ccli~at~ions of the 

geoicl ancl it,s rcfcrence spheroid are 

= a [1 - e l f 1  ( ',+ ) - cafz ( ',+ I ... ( 4 . 1 )  
and r, = a [ 1 - qf1 (o,+ JT 1, ... ( 4 . 2 )  
where a, + clenote the angular co-ordinates of  rt point,. Experience 
shows that  thc geoid ancl its reference sphcroicl can differ by 200 
or 300 feet and not very much more. Hencc rce, can at t h ~  m o s t  

1 amount to 300 feet,, i.e. e ,  = - -  = 0 ( ev, sl being of 0 ( ). 
6 x 10k 

The angle P between the radius vcctol- ancl the normal a t  a point of 
the surface ( 4 . 1  ) is 

1 { sin2a ( € 1  fill + 6 2 . f i 0  )l+ ( E l  fl* + €2 A * ) ?  )I 
tan p = p = 9 

sin 6 [ 1 + e,.f ,  + C, f2 ] 
where t'he suffixeu 8, .\t. rlcnote clifferentiations with respect to  6' alld + respectively. The angle x between thc normals of thc gcoi(1 
and sphcroid is of 0 ( e ,  E , ) .  Thc error macle i l l  talring 



The error involved in assuming 

(2) = (2) is of order 6s . p2 = 0 
8% sphcroid sphere 612 

which again is negligible. 
Also to an accuracy of 0 ( ye3), we can take 

where denotes the radius vector of a sphere of radius a. 
To the above order of approximation, therefore, the difference 

between the values of gravity on the geoid and its reference 
surface can be deduced by assumii~g the coating to be on a sphere. 
The ext,ernal and ii~ternal potentials clue to t<his coating of skin 
de~lsity o = p  C H,, on a sphere of radius a are 

(g)" H,,, S , =  4 ~ f n p Z  - 
2n+ I ... ( 4 ' 4 )  

& = 4 ~fap Z Hn 

Obviously, for .I. = a  we have 

Substituting in equatioil ( 9 . 3  ) wc have 

= + A,I/ + Azy, 
where 4,g is the direct effect of the coating and A,g is the indirect 
effect due to the differeilce in level between the two surfaces. 
Equation ( 4 . 5  ) can also be expressed as an integral equation in 
Q, viz. 

3 2.f. - - I+ =Ay, the integration being 011 a sphere of 
2 a 

radius a. Idelson* has inclicated a method of solving this with the 
help of spherical harinonic functions. 

The value of the potential on the geoid and its level su r fac~  
being the same, we have 

S = N y  

a,!/= 2?/ ;~  t -- I ... ( 4 . 6 )  

29 - 2lVg A - - 
a 

- - -- - - - - - -- - - - - -  -- . -- 

* Qerl. Beit, 40, 1933, 24. 



Alg denotes the attraction of the coating, a i d  is inacle up of two 

parts; 2nfa= 390 is the attraction of t'he near portioi~s a,nd 
4n 

NY - is the effect of remote portions. D is defined by t,he relation 
2 a 
a=pD, where p is the normal density of the earth's crust. 
If the coating a =p 2 H,, = pD is homogeneous, i.c. if D is constant, 
the near and remote portions exert equal effects, a i d  we have 
N =  ZD. The mass of the coating is m = -I..rrn20 = 47rcr2 D p  = %T (? Ifp. 
If H,, is zero, the coating becomes massless, ant1 the effect of its 
remote portions may be consiclerecl to be i1egligil)ltb. The indirect 
effect can also be neglected, pi-ovicled the separatio~l h' between the 
two surfaces is much less than D. I11 this case, we obtain the very 

convei~ient result tha t  the coating is Ad and a good est,iinate of 
2 ~ '  

the anolnalous masses can be obtaii~etl from the gravity anomalies 
by the use of the siinple infinite formula. This woulcl not of course 
hold for an extensive area, in which N varies within 1vidc1 limits. 
A t  first sight, we have ohtailled here an apparent contratliction 
with Green's equivalent stratum, which says t,hat inat,ter $1, i~~sicle 

an equipotential surface call be replaced by rt sltiil t lensit ,~ cr =-- 
4a 

on the surface. The explanation of the discrepancy lies in the fact 
AY that  the mass of Green's coating -- is not zero but M , .  7'hc effect 
477 

of near portions is therefore comparable with that of reinote ones. 
W e  have taken a massless coating, the effect of remotr portiol~s of 
which is negligible. The near portions only are responsible for 
producing Ay ancl we can use the ii161iite plane formula. 

The case usually met with is that a series of gravit,,v obsrrva- 
tions are carried out over a liinitcld area, nn(l fi.oin tholn thc lnilsses 
causing the gra,vity anomalies arc il~fcrred. For solvillg such 
problems, i t  is of great iinpoi-tanre to linnw thca tlisturhnilt~e of 
gravity clue to standard forms of anomalous masses. The indirect 
effect is of secondary importance. 

For a study of the mass distribution in an extensive region 
the indirect effect has to  be t,alien into account. Conveni~nt t,ables 
are now available* froin which this call he easily ol~tnincd. With 
the help of these tables, the Isostat,ic Tnstit,utc of' the ~ntc>rlla,tional 
Geodetic Association has calculaterl t the indirect cffclct of the 
Hayford zones 1 to 7 a t  different places on the earth. 

5. Subterranean mass anomalies . -For  an arcs covered 
with a sufFicientJly dense network of gravity stations, olle can 
deduce valuable information almut the inequaliticls of inass (as 

- - -- -- - - --- 

*Tnhbi for d ~ t ~ r r n i n i n g  thr form of thr :roirl, and i t -  in( l ir~rt  rffcct on 
gravity. U S. C. I ~ L  CCt. S.. Special plthlicntian No. 199. 

t Bull. Geod, 80, 1938, 409. 



recko~led from an assuin~cl sta~iilarcl clistl*ibution ) an11 about the 
nature of equilibrium from the gravity anomalies. I t  must however 
be borne in rnind that  this problem has no unique solution. So 
far as the gravitational effects are concerned, any mass call be 
replaced by an infinity of cliff'crent inass rlistributions having 
the same total mass. The following examples will illustrate this. 

A homoge~leous sphere, aurl a point mass st its centre have 
equivalent effects. Confocal ellipsoids with equal masses have the 
same external field. The intel.nal masses of an equipotential 

A(/ surface* can be replaced by a sliiti density -, so far as external 
47r 

gravitational effects are collceri~etl. The correspoi~ding; theorem 
for the case when the bounclary of the attracting inasses 1s not an  
equipotential: is tha t  the equipote~lt~ial of the internal masses is 

IY equivalent to tha t  of a skin density - coinbi~lecl with a clistribu- 
47r 

U tion of doublets of iiitensit,y - - per unit area with their axes 
4< .n 

directed normally, U being the internal potential of the masses. 
Agnin froin ai~alogy with a well-lci~own electrostatic problem i t  

call be easily shown tha t  the effect of a mass WL a t  C' a t  clepth z 
below thc earth, ( Fig. 4 ) assu~necl to lje a sphere of radius k, is 

nb { b2 - (k - s)? 
1 

equivalent to a coating of su14'ace density a = j on 
4 7r b? 4.3 

a sphere of radius b ; I.  cle11otc.s the distance from the point C', and 
radius b has to 1)e less than lr. From this we infer that a local 
c o m ~ ~ e ~ ~ s a t i o n  a t  clepth a call 1 ) ~  i.cplacec1 by a regional compenh- 
tion a t  a smaller depth and thus ~ r a v i t y  data alo11e will not suffice 
to tlistinguish between these two distributions. 

An exteusioll t of this theorem is tha t  n mass tlisti.il,ut,ion in a 
thick spherical sliell bounder1 by spheres o f  radii 1)' x11t1 b ( b' < b ) 
call 1)c replaced 1~y a coatiiig o ~ i  the surface b,  so for as its cbxternal 
effects are concerned. This may be proved as follows. 

Potential a t  P due to an clelnent clm (Fig. 5 ) a t  :L point 

( I.', HI ,  4' ) is SV='", e beill.. the distance of I' from ( I n , .  The 
e 

potential clue to the  volume density is 

=I::, [= 1:; ?' 
1 p 1 8, ) [ P,, (oos 3) + - PI (cos LJ 

1' r? 
l.'2 

+ - P, (cos 3) + .. . do for 9. > r', 
')"? I 

- - - - -- - - . - - . -.  

" ltouth's Statics, 77. 
t MacRobert, Spherical Harmonics, 163. 



1 r 
and V = 1: It' r f 2  p (1.') 8') 4') [ 2  P,, (COS {)+ 3 P,(cos () 

- 1 

r2 + ~ P , ( C O S D +  ...I - do f o r r  < r l .  

Denoting the external and internal potentials by Vc ancl Vi, we 
have 

P, (cos 3) tlP1 dr' d$' . . . (4 - 7)  
0 
a r lL 

and V; = I 1 I 1 p (r', Of ,  0') ..-;q P,, (cos 3) 4' h' d$' . . . (4.8) 
0 

If we know - t h e -  law of variation of density p, the external and 
internal potentials are 1i.nown. 

For a given value of v', let p (T' ,  8', 6 ' )  be expancled in the form 
p (rf, 0' 4') = 2 U j L  (TI, d', $'). 

l L  + 2 
Then PC= I I 1: IIRjtl u,, P,, 7l do  

-1 

The potential clue to a coating c = Z u,, on m sphere of radius 21 at  
an external point T' is 

The two potentials are equal, if 

Knowing u,,, we can determine v,,. It is to be noted that the coat- 
ing has the same mass as  the matter insicle the spherical shell. 

The above examples amply illustrate the fact that i t  is not 
l~ossiible to infer the exact distribution of the clistur1)ing masses 
from the gravity anomalies ; the t,otal sum of the disturbing 
lnagses can, however, be cleducecl from them. This call be seen by 
an application of Gauss' Theorem that if Ay is the attraction due 

" " 

t'o a system of masses inside a body, ( ( AgdS = ~ T M ,  where the 
J J 

integration is carried over the surface of the body and M is the 
#- r 

total sum of the masses. For a plane area, Agt2S = 271-M. 1J 
The value of this result lies in the fact that if the disturbing masses 
are a t  small depths, their effects fade off quicltly with the distance. 
Consequently the integral of the Ag's in a limited disturbed area, 
will approximately give the magnitude of the masses causing them. 
Thi~l result is valuable since the gravity anomalies and unclu1atio~~fi 
of  the geoid depend more on the total disturbing masses than 011 

their disposition. 
It should, however, be borne in mind tha t  the number of solu- 

tions is limited in practice by certain considerations. As an example 



of this we will show that  a set of gravity aliomalies can be explained 
theol-etically by placing suitable masses a t  any given depth. 111 

actual practice, however, if the masses are placed below a certain 
depth, the extent required is such as to make their existence 
physically improbable. To see this, suppose the gravity anomalies 
on a sphere of raclius a are expressed in a series of spherical harmonic 
functio~ls as Ag = C I/,, Y,,. W e  shall see later that thesc! can he 
explainecl by a surface clensity u=C u,,Y,, on a sphere of raclius 
(a - s), where 

To fincl the effect of the depth, consider a series of warps of 
wave-length 300 miles on a sphere of radius 3960 miles so that  

I n  equation ( 4 , .  9 ) replacing (T,, by an equivalent thickness of 
H iniles of roclr of volume density 0 - 02 gm/cm." we sea tha t  to  pro- 
duce an anomaly of 0 02 cm./sec.'!, we must have €1 = 1 .a7  miles for 
depth a=O,  ancl H= 1 53 miles for z = 2 miles. 'For this small 
increase of depth, t,herefore, the increase of H cloes not amount to 
much; but  when the increase of depth is comparable to t,he 
wave-length, a considerable increase of thickness H is required. Thus 
for a  = 150 miles, i.e. a t  a depth of half t'he wave-length, H = 39 
miles. 

To further illustrate thc point, consider t'he cases of n plane, 
a, spherical ancl a cylincli~icsl deposit. The attraction of a circular 
disc of raclius a and sui.face c1ensitJy a a t  a point height h, is 

=2rraf'Ir' (say ). 

The ~ariat~ioi l  of F with I b l n ,  is shown in t,he following table : 

We see tha t  for a given disc, F tlccreases I)ut slightly with 
depth when hln, is small. A particular case, in which t,hc att~.nct,io~l 
is i r~dc~endel l t  of the depth, is tha t  of the infinite plane co~.rcspo~~d- 
ing to 11,/a=O. For large values of h/n, howcver, li' clecreuscu as tmh~ 



inverse square of hla. I n  other words, cloubling the depth of the 
plane mass necessitates a fourfolcl illcrease of density t,o produce 
the same effect. 

A spherical mass of raclius 10 ltm. having a clensity difference 
of 0 . 1  g i n . / ~ m . ~  fr~oin the surrourldiiig material, wlll produce a 
A g = 0.028 cm./sec.", wl.ieii lt is tangential to the grouncl surface, 
and a 1 y = 0 .003  cm./sec.?, when its centre is a t  a clepth of 30 km. 
A t  a clepth of 30 lrm. or more, therefore, i ts  effect cannot be measur- 
ed with certainty. If the given gravity aiioinalies have to be 
explained by such a mass a t  a clepth of 30 km., we will have to 
postulate for i t  a much greater clilferencc of clensity from the 
surrounding masses. 

A cylindrical mass of 1-aclius .1 mile and thiclrness 1000 feet 
produces a Ay = 0 017 c m . / ~ e c . ~  a t  a point on its axis, 100 feet 
above its upper surface. When placed a t  a depth of 12,000 feet its 
effect is only 0.00069 ~m. / sec .~ ,  i.e. about 20 times less. 

The foregoing examples show that  i t  is possihle to  infer from 
the gravity anomalies an upper limit to the clepth a t  which the 
distul-bing masses can lie. At greater clepths the density inequal- 
ities requirecl will be too great to be physically possible. 

6. Mass anomalies expressed as a coat ing.-In cleter- 
rnining the difference in arrangement of the masses inside the 
earth from an assumecl stanclnrcl distribution ( like the isostatic), 
i t  is best to idealize the earth in such a way tha t  all inasses 
protrueling above the geoid are removed. One method of doing 
this is by the usual isostatic rerluction, which removes all the 
topography exterrlal to the geoid, and also its comper~sation as 
postulatecl by Hayforcl. The equipotential surface of the new inass 
system, which has the same poteritial as the geoicl (7 = C,,), is 
clesignatecl as the compensated geoicl. 

Let R he a uniform spheroicl ( Fig. GI) so chosen that the value 
of potential over it is U = C,, arid such that  i ts volume is equal to 
tfhat of the compensatecl geoid. The compensated geoicl is the 
equipotential of the matter within the following surfaces : uniform 
spheroicl R, matter A between the compensated geoicl and its reference 
spheroid R, matter B between the compensated and ~iatural  geoicls, 
ant1 the anomal~es from uniformity. These anomalies may either 
be deep-seated or close to the sarfacc. Let their effect be equivalent 
to a skin clistrihution a, on the spheroicl. Hence the compensated 
g(noi(1 is thcb ~claipot~ential of the uniform spheroid + skin dpnsihy 
a, + matter p ( N + N, ), where p denotes the clensity of the earth's 
cruyt, ATT the height of natural groicl a1,ove the compensatecl gt>oid, 
anrl N thc height of the compensated geoid above the spheroicl R. 

Imagine thc mass p ( N  + N , )  to he conclensed as a sltin denaitg 
or1 the* uphe~.oi(l, a ~ i d  l ~ t  cr, + p ( i'V + N, ) = (T. Our new mass 
clint~.ihution, then, is a sphtbroid 11' + a slrin density a on it. We 
will cleuignatc: hy co~.rectrbrl gc!oitl that  eqrripotclltial surfacc of this 
I I C W  mas8 systcln, whlch has tlic ealrle p o t c ~ ~ t i a l  as tllc cornpciisate(1 



geoid. The separation Nd of the corrected geoid from the spheroid 
is due to the effect of the skin density a. This concept of skin 
density is very useful for the solution of many problems; if one 
deals with the three dimeilsional distribution of mass as  found 
in nature, the corresponding f o r m u l ~  become unmanageable. 

As argued before, so far as  the effect of coating is concerned 
the spheroid may be replaced by a sphere of appropriate radius. 
The potential 6 V a t  a n  external point due to coating a = p Z Y, on 
n sphere of radius k is 

Hence, assuming the ratio between the crustal and mean clelisity 
6 3 YtL 

of the earth to be 2 .07 ,  we have ~'v,L= - = -- Z - 
. 

G 2 .07  2 n + 1  
The attraction of this coating a t  1. = k is 

If g,i denotes the value of gravity on the corrected geoid, and 
YO or1 the spheroid, excluding the attraction of u, then 

Let a, be equivalent t,o a thiclcness of H feet of roclc of normal 
rlensity, i.e. a, = p H. H represents the mass auonialy measured in 
feet of rock of normal density, and is given by t'he expression 

1 H = -  
2 r f p  

( g , t - y o )  - ( N  + Nc - 2 - 0 7  Nn). 

Taking f = 6.68 x 10-8 cm.R/gin. s e ~ . ~  and p = 2 - 67 g1n.lcm.5 we 
haveIi( in  feet) = 29 .2  x lo9 ( g , t - 7 , ) - ( N +  N , -2 -07  N,,) .  ( 4 . 1 2 )  

This formula has to be reduccd n bit further, as in pract,irc 
we do not know the cor1-ected geoid. Let  I' be n point on thc 
compensated geoid, and l',, a point on thc corrected gcoid, vert.i- 
tally below or above P. From Fig. 6 we see that  

( N ,  + a t t r a~ t~ ion  of a, + nt,t,l.nct8ion of lnat,t,pr 9,. = ro - 5 p ( N + N,.) a t  I ) ,  



yo- m, k + attraction of coating ( D ,  + p ( N +  N , ) }  
a t  P,i. 

Hence g ,  - g,l = attraction of matter p ( N + N, ) a t  P - 
attraction of coating p ( N + N,: ) a t  P,, 

where the volume integral extends throughout the space ( N + N,) ,  
and a,= p ( N + N,) is the skin clensity on the spheroid. The terms 
in integrals on the right-hand side can be evaluatecl rigorously with 
the help of Hayforcl's reduction tables, providecl the undulations 
( N +  N,) are known all over the globe. As far as our present knoml- 
edge goes, ( N + Nc ) can have a maximum range of 500 feet. It is 
quite easy to show tha t  except for very uneven terrain, the second 
term within brackets on t,he right-hand sicle of equation ( 4 . 1 3 )  is 
negligible. The first term amounts to 0 001 cm./sec.2 for Nd -N= 10 
feet. The average distance between the compensated and corrected 
geoicls is much less than this; hence for all ~ rac t~ ica l  purposes, g, may 
he put equal to  gd. Also to the order of accuracy to  which me are 
working we may put N,/ = N in ( 4 - 12 ). Our final expression for 
the anomaly then becomes 

H = 2 9 . 2  x 10:' (gc-yo)  - (N, . -1 .07N) .  ... ( 4 . 1 4 )  
The difficulty in  the practical applicat'ion of this formula is that 
the spheroid used for computing yo is oriented clifferently to that 
from which N, and Nare  reclroned. This difficulty will remain until 
we refer our t8riangulatioils to an  earth spheroid, or until a suffi- 
ciently clense mesh of gravity stations is available on the glohe, from 
which N can be computecl by Stokes' formula. 

I n  Inclia, N as eviclerlcecl from a stucly of the plumb-line cleflec- 
tions ranges froin - 20 to + 140 feet, but  most of the change is 
located in the narrow strip between Mandalay ancl Mergui. If one 
neglects this portion, N ranges from - 20 to + 40 feet, i.e. clisplays 
a range of 60 feet only. This thickness of matter, even if i t  be of 
infinite extent ancl of as great a clensity as the normal clensity of 
the crust, procluces a gravity effect of only 2 mgals. Mass anom- 
alies of this order are not of much interest. I f  we substitute in 
equation ( 4 14 ) the gravity anomalies in India, we see that 
varies from - 2,000 to + 1,000 feet. I n  particular, the Gangetic 
plane is an area of underloacl, the cleficiency there being equivalent 
to a skin clensity of - 500 to - 2,000 feet of rock condensed on the 
~lpheroid. These are rather large departures from isostasy, but one 
cannot argue from this tha t  there is no compensation. If this were so, 
rigorous topographic reduction shoulcl give zero a~lolnalies which is 
by 110 means the case. Some sort of compensation has to he 110s- 
tulated. 



Instead of assuming the standard earth to  be isostatic we 
might start with the three-layered crust, and infer from Ay's the 
interactions of the different layers with one another. As an  example 
of fitting observed gravity anomalies by trial and error by assuming 
warps at  the interfaces, may be me~ltioned the work of Ansel*. 

The above discussion holds when the objective is to  find the lack 
of equilibrium of an  extensive region or of the earth as a whole 
from some assumed normal state. W e  employ the earth spheroid, 
ancl it is imperative to use a physically plausible gravity reductioi~ 
like the regional, because we want to get the absolute value of H. 

When, however, the area under investigatioil is of comparat,ively 
small dimensioi~s as in geophysical exploration, the thing of interest 
is the variation of H and not its absolute magnitude. W e  call now 
use the spheroicl of best fit to  the area in question, and the reductioil 
to be employed need not be mathematically rigorous, since the effect 
of clistant portions is practically constant over this limited ares. 
As examples of such reduct,ions may be meiltiolled the  flat earth 
Bouguer, V. Meinesz's modified Bouguer, and Glennie's ( y - 7, ) 
reduction. 

The inclirect effect due to the separation between the geoicl 
and the spheroicl is of no moment in this case, and i t  is customary 
to find the disturbing masses by trial and error. The following 
table will illl~strate the case in point. It  gives A,?, Alg a t  a point 
ill the centre of a spherical cap of radius 9 -  and height h. 

1. km. 100 60 100 50 10 

A,g gals 0.34,l 0.336 0.115 0.114 0.110 

Algg,zlsO.O1l - 0 . 0 0 5  - 0 . 0 0 4  - 0 . 0 0 2  0.000 

The indirect effect can manifestly be neglected. W e  will discuss in 
the next para the attractions clue to  different types of attracting 
masses. 

7. Direct effect.- 
( i )  Infinite plane zuitl,, ct constant suq:face demity o. Attraction 

due to this is 

Ag=2.rr fa. ... ... ( 4 . 1 5 )  
From this we see that 30 feet of rock of density 2 . 6 7  produces 
A ,=o-oOl gal. This is a very useful rule for rongh e~t~imations. 

( i.i ) A n  hjhzite plal~c at cleptli, z ~uitli, a su,vface density 
a = o,, cos n :I:' ( Fig. 7 ) . 

At a poillt, A ( , I , ,  2 ) 011 the c\al.t,h, the vertical attraction clue to 
an eleinelrt ti.,:' is 



Hence, due to  the whole plane, 

S aO COB n z' dx' 
Ag (x) = 2f z = 2 f a,, e-'lr: cos ~ L X  . . . .  ( x ' - ~ ) ~ + z ~  

-a 

If we know z, we can get an idea of a, from the known values of 
Ag (4. 

As an example, suppose we want to explain t,he y-anomalies on 
the Hidden Range in India by assuming an upwnry in t,he crustal 
layer a t  depth z = 2 miles ( say ). If we  take bhe Hiclcltbn Range to 
be a part of a series of harinoliic ui~dulatio~is of wave-leligth 300 
miles, we have 

27T 
n = - and z = 2. 

300 
Hence, by equation ( 4-17 ), 

Let a, be equal to  H Ap,, where Ap,, = 0.2 gm/cm." so that H will 
be the thickness in cm. of matter of volume deilsity 0.2 gm./cm." 
Then we have 

H (in cm.) = 7.8 x 106 
- Ay = 39 x loe Ay. 

0.2 
Taking the mean anomaly on the top of the Hidden Range to be 
0.02 crn./~ec.~, we get  H = 4.8 miles. 

( iii ) Spheriml disc* Fig. 8 ). The attraction of a spherical 
disc of radius k, surface density a and angular extent 8, a t  a point' 
a t  height h above its middle point, is 

When h is small compared to k, we have 

( iv ) Spherical coating t. I n  sub-head ( i,ii ) we have consid- 
ered a uniform spherical coating of limited angular extent 8. We 
will now deal with the more important case of heterogeneous coat- 
ings extending over the whole sphere ancl will consider in turn the 
anomalies produced by 

( u )  an  uncompensated skin density 
- 

* Helmert, Hoheren Geodiisie 2, 1884, 89. 
t Formula? similar to the ones in this para hnvc been uscd by Jeffreys in 

'"l%e Earth", p. 221 end by Stoneley in M.N.R.A.S. Cfeoph. Suppl. 8, 1933,l'i6. 



( b ) a compensated sltili density 
( c ) u11clulatioils a t  the interfaces of different layers of 

the earth's crust a t  ltnow~l depths. 
( a )  Uncompensated skin clensit y.-Consider a spheroid having the 

same volume as the earth. The actual earth is, therefore, made 111) 
of this spheroid with ui~compensated t~pogra~phy  of total mass zero 
superposecl on it. An idea of the effects of this mass may be 
obtained by condensing i t  as a coatilig of skin density a 011 a s p h e r ~  
having the same volulnc as the splle~ooicl. Let  the level surface ?,=a 
be deformed by all amount N on :~ccou~lt  of the siipei.l~ositioi~ of ski11 
density a = xu,, IS,, on it, S,, being a Laplr~ce's functio~l of oi-tlri- t r .  

The poteiltial due to this c o a t i ~ ~ g  is 

Hence V 1 JIT f t c  N = - = -- 2 -2- a,, ~ 5 ~ , ,  c: c: 2 ) ~ + 1  
The direct effrct of the coatilrg a t  /.=a is 

If the indirect effect is also talten illto account, the usual convention:sl 
a~~omaly  is 

2  V n - 1  A yl  = - - = A I T ~  t; a,, 8,, ... ( 4 . 2 1 )  
r . 2 n  + 1 

Suppose, now, the skin density is ~.epresentecl by the s i ~ ~ g l e  
harmonic a,, Si,. W e  see that  for large values of n ( i.e. for local 
featul-es ), thc a i~o~nal ies  A y and A !/, nine pl.actically iclei~tical, 
which means that the inclirect effect is of no consequence. For 
small values of n, however, ( i.e. for wicle-spreacl inequalities ), 
the indirect effect is material, as can be seen from the fo l lowi~~g 
table: 

n = 1 2  5 10 50 
y in gals = 24 22  - 2 0  el9 e l8  

A y, in gals = '00 - 07 - 13 15 -18. 

This table has been derived by putting a,, S,, = p l b  S,,, and assuming 
P = 2 ~ 6 7  gm./cm.3 and 1b S,, = 1 mile. 

( b )  Compensated skin density.-The results for this case would 
(lepend obvioualy 011 the type of compe~lsation postulated. Suppose 
in the first instance, that  the skill density a = u,, S,, is compensated 
according to Pratt's hypothesis, the depth of coinpensat.ion being 7. 
The compensatio~l mass is distributecl between the spherical surfaces 
(1 811~1 a-7, ant1 its density is given by the usual equation 

3 a2 
P C =  , -7-7 GI, 8,'. ... ( 4 . 2 2 )  

a?- ( 
The condition utilized for obtaining this expression is that t,lie illass 
of the topography and its compensation in ally unit colum~l are the 
mme. 



The expressioil for the poteiitial of the coatiilg has beell even 
already ; the corresponding potential clue to this compen~ation is 

Finally, the ailomaly y - yo produced by this topography and its 
compensation is 

W e  next proceed to the case when the skin density is compen- 
sated according to Airy's hypothesis ; i.e. the compeilsation has the 
same mass as topography in a unit vertical column as before, but is 
spread over a sphere of radius ( a - 4 T ). The density of compen- 
sation is 

uc = ailf S,,, where a,,' = a,, a= ... ( 4 . 2 5 )  
( a - $ 7 ) '  

Proceecliilg as before, we have 

- - 4 ~ - f .  --- n-1 n-1  7 a)' S,  - 1 - - - . - 
2 n t l  2 a [ 2 2a 

W e  will now give another solutioii based on the coildition that 
the topography and its coinpelisation make the compensatio~i surface 
9. = ( a - 4 T ) ail equipotential. The internal poteiitial of coating 
(T, Sf,, is 

and tha t  of coating a," S,  on sphere r = a-  4 T is 

-. 
I ( a - &  4rf u,, 8, -- . 

2n+ 1 p+l 

The conclitioil of equality of these for r = a  - 4 7 is 

W e  see that  the law of comperisat,ioi~ is quite different from 
that obtained in ( 4.25 ) ; the corresponding anomaly - 7, is 



The above results may be summarized as follows : 
"+ 

.a.lF. = Direct effect of an  uncompensated coat- A g  =47rf . -  
2n+ 1 

ing cr = C a,, 8,, on a sphere of raclius r = a. 
n - 1  A g l  = 47rj'. - cr,, S,, = Conventional anomaly due to the above 
2n+ 1 

coating. 
n-1  

Ag,= 47rf.- S, .-I .< ( 1 - ) = Conventional anomaly 
2 n t  1 a 

due to coating a = da,, R,,, coinpensated according to Pratt 's 
hypothesis, thc depth of cornpensation being 7.  

n-  1 n- 1 .7  Ag, = 47rf.- o. S,, . 1 .: ( 1 - - - = Conventional anom- 
2n+ 1 a 2 Pa 

aly due to coating- u = xu,, IS,, compensated according to 
Airy's hypothesis, the depth of compensation being 712. 

aly clue t'o t'he above coating, compensated in such a way 
as to make the compensation surface 1. = a - 4 7 an equi- 
potential. 

The following table gives thc maximum values of t'he anomalies 
as computed by the above formul~c, due to  a coating equivalent to a 
t'hiclrness of 1 mile of rock of normal clensity 2.67 .  The values of the 
coilstants have beer] t,alsen as a,, = plbS,, ILS,, = 1 mile = 160934 - 26 
c m . , p = 2 . 6 7 g m . / ~ m . ~ , ~ = 1 1 4 k r n . , n =  6370 km. and f = 6 . 7 x  10-8. 

From this table we can get an idea of the anomaly expected 
on a perfectly compensated earth when the topography can be 
represented by a single harmonic of given amplitude. The figures 
represent the resultant effects of the attraction of the masses, and 
the distortion of the level surface. So far as the direct effect of 
the actual topography and its Hayford compensation is concerned, 
its magnitude is generally of the order of 30 mgals. For Himllayail 
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stations, however, it can be considerable ; in some cases i t  amounts 
to  160 mgals, the free-air correction being of the order of 1000 
mgals. For stations near t'he sea also, tmhe correction for topogra- 
phy and its compensation is large, bu t  the height correction in this 
case is negligible. 

( c ) Undulations* at the interfaces ?f different layers of the en~th's 
crust at known depths.- 

The effect of crustal warpings or bucklings a t  t.he interfaces 
can be dealt with in two ways: 

( 1 ) By the method of spherical harmonics. 
( 2 ) By the formula for a t t ract ioi~ of a prism of given 

cross-section or of a parallelopiped. 

W e  will consicier ( 1 ) here ; formula for ( 2 ) will be given later. 

Suppose the gravity anomalies Ag = 3 g, S,, are due to warpings 
which may be considered as a coating of surface rlensity a = C a, A',, 
on a sphere of radius ( cr - 2  ). The potent'ial clue to this coating at, 
a distance r is 

and the gravity anomaly on sphere of radius n is 

1 
Hence a,, = -- 

If t'he volume density a t  the interface be A p, we have a,, = H,, A p, 
where HI, ~lenot~es the amplitude. Knowing A p and z,  we can find 
from ( 4 . 3 0  ) the g,,'s corresponding t,o given Hr,'s, and vice versa. 

As a particular case of the abo-re suppose a sui-face density 
n=a ,  sin2 28 is superposed on a level sphere of radius n. In terms 
of spherical harmonic functions 

It gives rise to the potential 

A, P,, = 4 r f a Z -  for r = a. 
2n+ 1 



Hence 
V 4 w f a  A,,P, N = - =  

G 
C- 

G 2n+ 1 

- - -- 3 2 -  A ,  PI, 
PI,, 2 n  + I 

- 12a, 2 - -  - -  
2 

P,, + --- P 2 ,  --- P, 
PI,I 105 315 * 1 

= Z!3(!!+26 
PI, 35 35 3 

The corresponding anomaly ( (I - 7, ) is 

2 *!I 6v 2 N!I 
n g = a ~ s - , = - ( ~ ) ~ = ~  a a 

The case where there are warpings a t  two interfaces a t  different 
depths ci~nnot be solved uniquely unless some assumpt.ion is made 
about the ratio of the amplitucle of the two warpings. 

( v ) A s p i ~ s ~ i c n !  mass M at depth d. The clirect effect a t  a 
point clistant T = ~ / ' x ?  + d2 from the centre of the sphere is 

Thc attraction ciecreases with the depth according to the 
inverse square law. The cleformation of the level surface due to 
this mass a t  a point a t  height d above the centre of the sphere is 

v fM N =--- 
G -  G d '  

The clirect ancl indirect effects a t  this point are 

where R is the radius of the sphere. 

R Their ratio-= -- a large quantity if the radius of the sphere 
A , g  2d'  

is talcen to be much greater than its depth. 
Since me always look for irregularities in the upper layers of 

the earth's crust ( i.e. when d is small ), i t  is always permissible to 
neglect A, (I. For a given d, the variation of A, 9  with the horizontal 
distance x is given by the following table :- 

( I J ~  ) A two-dimensionctl fcctt,,h~o.-Consi&r a ~ectangulal- cy1indc.r 
With cross-section a y as shawl, in Fig. 9. The cylinder is of i n f  nit(? 
extent in the direction perpendicular to the planc of the paper. 



The vertical component Zo of the attraction of the cylinder 
a t  the ~ o i n t  0 is 

L 

z 1 Z, = 2fp  [y log tan - + - z log 
v 2 (1. f )] 

and x 
p =-. ... ( 4 . 3 2 )  

Y 
The values of F for different values of p have been tabulated 

by V. Meinesz*. Wi th  the hell:, of this table, t,he attraction of the 
cylinder for any position of 0 can be easily cleducecl. The chief 
value of this formula lies in the fact tha t  i t  enables anomalies to be 
cleduced for the case when the normal structure of the earth is 
assumed to  be three-layered, and when the anomalies are due to  
intrusion of one layer in another. 

( vii ) A triangular prismt .-Suppose we want to  find the attrac- 
tion of a prism a t  the point C (F ig .  10 ). Let  CAR be the cross- 
section of the prism through C, ancl let L,, L, be the lengths of the 
prism on either side of C. The expression for the potential a t  C is 

V =  f p b2 sin2 A cot A log - + - ( ( " 3  
+ c o t R  ( log-+- 2L 3 ) -  L C ) ,  ... ( d . 3 3 )  

n 2 
where L =  JL, L,. 

The vertical attraction of the cylincler a t  C is 

A , y =  2 f p b a i n ~ ( ~ c o s  a sin ( A - 9 , ) )  ( 4 . 34 )  

This formula is  specially useful when we are trying t,o find 
the att,ract'iun of a loilg mountain ridge. It has been usecl by 
Thyssen f to examine the difference between a theoretically calcu- 
lat,ecl ancl a measurecl gravity anomaly. 

( viii ) Attraction of n paral1elopipecl.- 
This has been dealt with in detail by E. A. AnselQ, who has 

appliecl t8he formulz~ to  several practical cases. 

8. Gravity reductions for deducing subterranean 
anomalies :-The observed value of gravity a t  a point on the 
carth can be macle comparable with the normal theoretical value 70 
by applying certain corrections to i t  basecl on different hypotheses. 
It i ~ l  not proposed here to go into the merits and demerits of 
the various recluctions usually employecl. I n  this para we will 
offer some justification for Hayforcl's isostatic reduction method. 
Hayforcl's postulate of local compensation is unreal in the light of - 

* Gravity Expoditions at  See, 2, 1923-32, 24. 
t Helmert, Hiiheren Geodiisie, Vol, 11, 277. 
f Reit. Zu Angewandten Cfeophysik, 7 ,  1939, 366-91. 
5 Hoit. Bu Angewnndten Geophynik, 5,  1936, 263-95; 6, 1937, 141-1671 

7, 1939,21-38. 



our moclern knowledge about the structure of the earth, and 

/ geologists are apt to discard without much ado any results based 
I on this theory. Indeed i t  has been argued, tha t  whatever success 

this hypothesis has achieved is only due to  the accidental cancella- 
tion of different factors. To test this, we will compare the usual 
isostatic anomalies with those based on other hypotheses for the 
Himrilayan stations. W e  have chosen moul1taiilous stations for this 
purpose, because the allomalies there display larger variation. 

112 the following tables, Ag,, Ag,, Agc cor1-espond to free-air, 
Bouguer ancl the usual isostatic: compensation anomalies respectively. 
On the Airy's hypothesis, ailomalies are computecl 011 the assumption 
that the thickness of the crust cc11-responding to zero elevation of a 
region is 40 km. Sfl, 8, are based on V. Meinesz's hypothesis of 
regional compensation, as clescribecl in para 1 ; AqcH is the Hayforcl 
anomaly on the Helmert spheroid and AgcI on the Interilational 
spheroid. 

Table A gives the a~loinalies as well as the means with a~icl 
without r e p r d  to sign for s t a t i o ~ ~ s  in the Kashmir area. Some of 
the remaining typical moulltail1ous stations are show11 in Table B. 
Table C gives the anomalies a t  the three stations Darjeeling, KLW- 
seong and Sanclakphu, which lie practically on the same meridian. 
The ranges of the. various anomalies are also shonw i n  a tal)ular 
form. 

TABLE A 

i - 
." 
h 

V1 - 

1 
2 
3 

4 
5 
6 

7 
8 
9 

10 
11 
12 

13 
I 4  
15 
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17 

AgB 

cnr/sec2 

- . I84  
-.227 
-.Z86 

-.2(il 
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- .296 

-.306 
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- .298  

- ,332 
-.301 
- .280 
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- ,205 
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.2(;2 
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-- 
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+ ,017 
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,037 
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1 

-~ ~ 

cq,l./sec2 

+.032 
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- 1  
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- ,013 
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+ .o!).J. 
+ ,111 
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Murrce ... 
Dome1 ... 
Shidipur ... 

Gandarbal . .  

Hayan ... 
Son%marg ... 
Churawan ... 
Minmarg ... 
Deosai I ... 
Deosai T I  ... 
Deosai ITT . . .  
Lilpnr , 

Srinagar ... 
Pingalan . 
Y ~ s  Maidin . 

RoraK . . . 
T o ~ \ I  Mxiclhn ... 
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-.00:, 
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519:3 

6200 
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on the surface of compensation S. The physical definition of 
isostasy demands tha t  the coinpensation ill nature must be so 
arranged tha t  the topog~aphy and compensation make the compen- 
sation surface S an  equipote~itial. Hayfordian local compensation 
fails to satisfy this condition, and the usual isostatic recluction so 
displaces the masses t ha t  hydrostatic equilibrium cloes not prevail 
on and below S. To preserve the equality of mass of topography and 
compensation and in order tha t  the physical condition of isostasy 
may not be violated, the compensation has to  be regioiial rather than 
local. Jung* has estimated that  the results from rigorous isostatic 
reduction differ materially from those of the usual isostatic reduction, 
and hence our usual Hayford anomalies are not suitable for juclging 
equilibrium of the earth as a whole. This is no doubt trur, but it 
should be borne in mind tha t  although Jung's true isostatic reduction 
satisfies the physical colldition of the floating crust, there are 
several sources of error which still remain. Amongst these may be 
mentionerl the ignoring of the stresses in the earth's crust. Our 
lack of knowleclge of these stresses introcluces an element of uiicer- 
tainty in all the reductions. Again, in reducing the observecl 
gravity on the earth to the level of the geoicl, the vertical grsdie~lt 
6y/8h is allowed for by the ilormal free-air foi.mula. There is little 
doubt that  this gradient clepellcls 011 the irregular clistribution of 
visible and buriecl masses, aiicl varies from place to place. There is 
also the inevitable uncertainty in the assumed density ancl deptli of 
of compensation, which militate against a reliable quantitative 
estimate of the mass anomalies being made. 

9. Choice of normal gravity for deducing mass 
anomalies . -In this chapter we have discussed the methods of 
estimating mass anomalies with the help of gravity anomalies 
reckoned from an  empirical gravity formula. The question of the 
oravity formula to he chose11 for this purpose merits some consiclera- 
tion. As cliscussed in chapter 11, the formula for normal gravity 
depencls on three parameterst G,, A and B, which are generally 
deducecl 11y least squares. We have seen how the value of G, 
depencls vitally on the clistribution of observational material avail- 
able. For instance, the International formula gives G,  = 978 .O49; 
utilizing the gravity data in India alone ( available up to 1928 1, 
the value of (2, found1 was 978.021. For declucing the ma,gllitude 
of the mass anomalies in an area, i t  is better to use the value of Gt 
appertaining to that area only, i.e. for India, we shoulcl use the 
Survey of Illclia value for G,.. This is specially necessary in the 
case when the gravity anomalies in the limited area are of the saille 
sign. For instance, suppose the mean value of Ay on the Hidden 
Range is giver1 tJo be 0 . 0 2  mgals, ancl we are aekecl to deduce the 
magnitude of  the Hidden Range. If this Ag is computed with a 
wrong value of G,, our cleduced magnitude of the Hidden Ranme woul(1 ? 
he wl.olig. Thcbse remarks also hold, when a profile of nq is given, 

- . - 

%(,it fur (tooph. 14, 198H, 27. 
t 'rho formula compri~ing thv l o n g i t ~ ~ t l ~  term cunt:~in four pal-nmrtcrs. 
$ Survoy of Indiu, Geodetic Roport, Vol. V,  55.  



and we want to find the masses responsible for it. A different G, 
will reduce all Ag'e by the same amount and therefore absolute 
values of the mass anomalies AM will be reduced. It is important 
to note, however, that  the range of variation of AM will be correctly 
depicted, no matter what value of G, is selected. Also, the 
effect of choosing slightly different values for the constants A 
and B in the gravity formula is immaterial when we are dealing with 
a limited reglon. 

10. Summary.-Gravity anomalies a t  sea have presented 
peculiar features, whose interpretation is still not complete. On 
land, gravity research Elas affordcd valuable clues about the tectonic 
folding of various regions, and the thickness of the earths' crust 
therein. On the quantitative side, one call cleiluce from these anom- 
alies the clepartures from isostatic equilibrium expressecl as a 
thickness of so many feet of surface coating having the same density 
as the earths' crust. 

By trial and error, i t  is possible to fit the observecl gravity pro- 
files by assuming appropriate mass distributions. Formulae have 
1)een given for the effects of some typicid attracting masses. 

The question of the gravity reductions and the choice of gravity 
formula for cleducing mass anomalies have also been considered. 



STOKES' FORMULA AND THE UNDULATIONS OF 
THE GEOID 

1. Boundary problems of potential theory and 
geodesy.-In order to he able to understand properly t,he sithject 
of the undulatiol~s of the geoicl as derived from gravity anomalies, it 
is necessary to  recapi tulat~ a few facts regarcling what are known 
as the boundary pl-oblems of potential t'heory. These may be enun- 
ciated as follows :- 

( i )  Given the value of the potential on t,hc bounclary of 
any surface, find its value a t  all point,s of space. 

( ii ) Given the value of gravity a t  all points of the bound- 
ary of a region due to the internal attracting masses, find the 
potential fielcl a t  all points of space. 
Problem ( i ) may be illustrated by t,he simple case of a sphere 

with a coating of surface density rr on it*.* Let the known potential 
a t  a point ( 0, L )  on this sphere be 

v (0,  L )  = 2 Y,t (0 ,  L )  
n=O 

= 2 {An P n ( p )  + 3 (AajficosmL 
n.=o m=l 1,  ... ( 5 . 1 )  

+ B,, sin m L )  P,, ( P )  1 
where p = sin 8. 
The coefficients A,,, Air;,L and BILilL ill this series expansion are known. 
If Vi, Vc clenote the potentials internal and exiernal to the sphere 
(assumecl to be of radius a), we have 

The skin density of the coating is 

Thc expressions ( 5 . 2  ) for the internal ancl external potentials 
can bc expressed in a form in which spherical harmonics do not 
occur. From ( 5 1 ), by lrnown properties of spherical harmonics, 
we have 

Y, ( 8 ,  L )  = 2 n t  ' 11 v (01, L ' )  P. ( s in  c )  ( d L', 
4 Ir 

where sin = sin 0 sin 0' + cos 8 cos 9' cos ( 1; -A ' ) ,  and p' = sin 8'. 

+ Mac Robert, Sphoricel Harmonics, 163. 

80 



1 
Hence V i = - ~ ~ V ( e ' , ~ ' ) [ ~ ( 2 a + l ) ( ~ ) ' L ~ , L ( s i n ~ ) ] d $ d ~ '  4 l ~  I )  = O  

These forinulz mill be made use of in paras 4 aiicl5. 

.. . 

- - a (a2 - r3 )  

Problem ( ii ) is also capable of an easy solution for the  case of 
a sphere. Suppose gravity g = f ( 8,Ii ) = ZY,, ( $,I, ) is known on t'he 
sphere. The external potential function Vc is such tha t  V2Ve = 0 in 
the space external to the sphere, and 

471- ( Y" 2 u ~  sill c+ n2 )+ 
0 -1 

Similarly, 

v, = 
( r2 - 2av sin + a2 )+ 

)'=a 

u Taking Ve=C -2- we see tha t  i t  satisfies the first conclition. The 
,,.&+I ' 

I . . .  ( 5 . 3 )  

second conclitioil gives 

0 -1 r 

a1~+2 y 
f ( f3 ,L)  = C  ( n + 1 ) u u = ~ ~ , 1 ( 8 ,  C G 1 ~ + 2  L ) ,  or u, = 

n+l ' 

Hence 

The internal potential Vi can only be written down when the internal 
masses are known. 

The above problems are also soluble when the boundary is 
a nearly spherical surface, and the attracting masses consist of a 
coatinm on it. I n  geoclesy we are maii~ly concerned with the geoid, b. 
which is a level surface of certain masses whose location and extent 
are not precisely known. 

I n  the problems of potential t'heory the boundary is not a level 
surface but its form is' Icnown, while in geodesy the reverse is the 
case; the bouildary is a level surface but its form is unknown. 
The fundamental problem of geoclesy is to find the form of a nearly 
spherical level surface from the variation of gravity on it, i t  being 
assumed that  there is no attracting matter external to the surface. 

Conversely, if the form of a level surface of a system of attract- 
ing masses which lie entirely within i t  is known, the external field 
can be determined. We shall see tha t  this field is determinable 
without making any hypothesis about the distributiorl of matter 
in the interior of the attracting system. 

These problems have been a subject of great controversy on 
account of the fact tha t  the level surface of the earth with which 
the geoclesist is mostly collcen~ed, liarnely the geoid, does not ellclose 
all the attracting masses. 



2. Stokes9 equations.-Chapter I, para 6 gives Stokes' solu- 
tion of the above problems for a nearly spherical surface. It  is 
shown there t ha t  on the level surface 

having no masses external t o  it, we have 

fY 2 where G = --O- - 0 2 k  and Yo denotes the mass of the attracting 
k2 3 

body. Equations ( 5 . 4  ) ancl ( 5.5 ), known as Stokes' equations, 
are  of fundamental imp~rt~ai lce in problems connected with the 
figure of the earth. 

From them we see tha t  given gravity on a level surface having 
no masses external to it, the parameters defining the slial~e of the 
level surface are known. Theoretically, the linear diineilsion k 
can also be derived from the variation of gravity on it., but it's deter- 
mination is so weak tha t  i t  is of no pl-actical value. As particular 
cases we might mention tha t  if t.he geoid is a triaxial ellipsoicl, me 
can get  i ts axes and mass from values of gravity a t  four different 
latitudes. I n  the case of a spheroid, we can determine the param- 
eters k, E and M from values of gravity a t  three known latitudes. AS 
ment,ioned before, the determination of 7c is very weak. 

The equations ( 5 - 4 )  ancl ( 5 - 5 ) also afforcl a solution of the 
converse problem. They indicate tha t  if we know r ,  then gravity 
is known all over the level surface except for one constant. This 
constant can be determined from the mass of the matter inside 
the surface, or  from the value of gravity a t  a point on or 
external to it. I n  particular, a level spheroid ancl a triaxial ellip- 
soid are defined by the constants ( k, e ) and ( k, e, 7 ) respectively. 
The above amounts to saying that  these constants are not sufficient 
to express the variations of gravity on these surfaces; we need yet 
another constant G' depending on the mass of the body. The rela- 
tion between G' and M for the case of an  ellipsoicl with unequal axes 
is given by the last of t'he equations ( 1.73 ). 

3. Precision of Stokesy equations.- From chap. I we 
see that  formula ( 5 5 ) is only correct to  the first order of small 
quantities. More precisely, the value of gravity on a surface of the 
form ( 5 4 ) is given by formula ( 1 . 4 3  ), which differs from ( 5 . 5  ) 
in the coefficients of the terms P, and P,. I n  practice, howciver, we 
work not with gravity on a level surface, 11ut with gravity allom- 
alies reclronecl from a suitably chosen reference surface. Stolres 
chose as his reference surface the spheroicl 

on which gravity is 



The separation between the geoid r =  k ( 1 + 2 u,, ) and this surface is 
11=2 

and the gravity ailoinaly is 

In these equations i t  is implied tha t  G has the same value for the 
geoid and its reference spheroid. Incorporating the term + E P, in  
u,, we obtain the two equations 

Stokes' reference surface r=7c ( 1 -+ E P,  ) is not an exact spheroid, 
but differs from i t  by ( e? P, - e V P ,  ), which can amount to 
100 feet in latitude 4 # 5 O .  

There is no objection to  taking the above as a reference surface, 
but Stokes' method of deducing equations ( 5 . 6  ) is open to two 
objections. One is tha t  he uses an  expression for the external poten- 

tial V, = 2 yx Yw in a spherical harmonic series, the convergence of 

which has been doubted in the region near the boundary of the 

geoid ; the second is tha t  gravity is talcen as - s, where r is the 
6r 

8Ve - radius vector a t  t,he point considerecl. Actually - -- - q cos x 
61. 

where x is the angle between the normal and the radius vector a t  
the point considerecl. The error iilvolvecl in  this, for the case of a 

spheroid, is fi = 0 ( g e 2 )  = 0 ( 10 mgals ), which is considerable. 
2 

To assess the accuracy of equations ( 5 .  G ), i t  is more convenient 
to employ the method of t,heir derivation outlined by Pizetti*. 
Let the geoicl be 

and its reference surface 

i t  being assumed tha t  el is of 0 ( e2 ). 
For an exact spheroid, 

By ecluations (5 .7)  and (5.8), 

r(/ - rs = N= - 12 el s 2,'. 

* Atti dolla Rcalc. Acad. dells Scionze di Torino, 46, 1911. 



Let the potential on the reference surface be IT= W,, and on 
the geoid, W= IT+ S  = W , ,  S being the potential due to the coating 
between the two surfaces. The mass of this coating is obviously 
zero. We have 

where 

Hence 
6 8  1- g-ry,=N - - - - 2 N G  6 8 ,  2 8  FS ( 5 , 9 )  (6g'ln0) Fn' 

--__ ---- 
k 6 .n ii F T '  

where d r  denotes the differentiation along the radius vector of a 
sphere of radius k and G is the mean value of gravity. 
If we take S  = Z k 1L + Y,Jr '" + , we see that  

Y, Y ,  A g = z  ( n - 1 )  - and N = C  -. 
k G  

These are identical with Stokes' equations. 
We have shown in chapter IV, para 4, that in equation ( 5 - 9 ) 

each term is of order ( g  E ' ) ,  anel terms of 0 ( y s3 j have been neglected. 
Hence although Stokes derived his equations from first order 
considerations only, still in the form ( 5 - 6 ), they are really correct 
to 0 ( e2 ). If terms of O ( ge3 ) were inclucled in equation ( 5 . 9  ), 
Stokes' expressions for Ag ancl N woulcl not satisfy it. 

This can also be seen as follows. . Suppose the geoid is 

By ( l S 4 3 ) ,  gravity on i t  correct to orcler €"is 

This equation is obt'ained from t,he extension* of Green's theorem, 
that the potential of a rotating attracting mass is 

and by utilizing the conclition that this expression has a constant 
value on the geoicl. 

If, now, the reference spheroicl is talren as 

then %=G ( 1 + a P 2 + P P , ) ,  ... ( 5 . 1 4 )  

Malkin, Gerl. Beit. zur Geoph., 45, 1935. 



where 

From these relations we get the usual equations for Ag and ( r  - r s ) .  
It is interesting to  show tha t  the same relations are obtained 

even if the equation of the reference spheroid be taken correct 
to 0  ( E". W e  have 

Putting 
23 3 

u9 = - - r p 2 , u , =  !? ~ ~ p ~ a n d u , = u ~ = 1 ~ ~ = e t c . = 0 i n  ( 5 . 1 0 ) ,  
63 35 

we obtain 

%=G [ I +  ( a -  

Hence r - r s =  k 
12 23 B P ,  - - r ~ , ,  + B tat 
35 2 

and 
3 6  A g = ~  [ Ba P P > -  , r V 4 +  z ( n  - 1 )  TL. . 

6 3  * 35 P 3 
These equations may be written as 

and are of the same form as ( 5 - 6 ) .  W e  shall see in the next 
chapter tha t  t'his is only a particular case of a general theorem on 
the choice of a reference surface. 

It is importai~t to realize tha t  the coeficieilts of the terms in 
P, and P,  in formnla ( 5 . 5  ) are not correct to 0 ( r' ). But t,he 
corresponding value of yo is also taken with the same errors in these 
terms, with the result that  t'hese errors cailcel out in ( 9 -  y o )  and 
make the equations ( 5 . 6  ) correct to second order terms. The 
necessary conditioils which the reference surface has to satisfy for 
the above to be valicl will be discussed in the next chapter. 

4. Form of the natural geoid, and deviation of the 
vertical.-A question of prime import,nnce in geodesy is to find the 
form of the natural geoicl of the earth or in other words its deviatioil 
N from a reference surface. This can be done by utilizing deflection 
data or gravity anomalies. The inethorl of cleterniining, N froin 
plumb-line cleflections is, however, applicable only to  a lilnited area 
and is used to give the separation of the geoicl from a reference spheroid 
fitting tha t  area best. The gravity a~iolnalies enable N ns well as 



the deflections (T,I, [ )  to  be determined with reference to an absolute 
spheroid called the 'Earth spheroid7, (cf. chap. VI). This universal 
spheroid can also be obtained from deflections, if these were known 
over the whole globe. But  this involves the connection of all the 
geodetic triangulations of the various countries, which is a remote 
possibility a t  present on account of the apparent impossibility of 
observing deflections on the oceans. The advent. of new gravime6ers 
has now made the programme of covering the whole globe with a 
reasonable mesh of gravity st,ations well within the range of 
possibility. W e  will review here the methocl of determining N ancl 
(7, t )  from gravity anomalies. Two methocls are available :- 

( a ) By a suitable hypothesis, all the masses external to the 
geoid may be removed. The level surface of the new mass system 
may be callecl the corrected geoid ancl its undulations may be 
determined from the Ag's. The clistance between the natural and 
corrected geoicls is easily calculable from the known mass transfers 
ancl when aclded to the above unclulations will give the desired 
result. 

( b )  ,The actual topography may be left uuclisturbecl, ancl the 
~uldulations N of the natural geoid may be clerivecl by computing 
the gravity anomalies on it. W e  will cliscuss this methocl in para 10. 

Method ( a ) is the one generally used. The idealisatiori of the 
earth which i t  involves may be performed in several ways as we shall 
see in para 8. To illustrate the method we will assume that the 
observed gravity values are reducecl isostatically i.e. the effects of 
topography anel it,s Hayforcl compensation are removed. The level 
surface of the new masses is the compensatecl geoicl, and we want 
to cletei-mine its form. Our problem reclnces to finding the form of 
a level surface having no masses external to it, and this is given by 
the equations ( 5 . 6  ), viz. 

u 

for A g = G 8 v ,  ... ( 5 . 1 8 )  
2 
u 

we have N = k S  v,/n-1. . (5.19)  
2 

To get N, me must know the series for  Ag in spherical harmonics. 
Ag is an observational quantity, ancl some attempts have been made' 
to expancl observed gravity anomalies on the globe in a series of 
spherical harmonics. But i t  is a very 1a.borious process, ancl a very 
large number of terms are required for its adequate representation- 

Stolres, however, coilnectecl N with AIJ by a quadrature formula 
which is of great practical value. From ( 5 . 1 8  ) we see that 

2 n + I  *Y 
,u '"IT = -ll~. 3 dw, 

where rlw represents an element of solid angle on a unit sphere. 
Substituting in ( 5.10  ), we have 



2n+ 1 
Now C - p, P,, = 2 2 P,, + 3 2 

n - 1  n -1  

+ - cos+ log, (sin - + sin2 
2 * 2 11- 

ancl hence 
27r G 

where + ailrl A are respectively the angular rlistallce and azimuth 
of the point a t  which N is to be cletel-ininecl from the point a t  which 
Ag is taken. . 

Pizetti proved this formula iilclepeildei~tly starting froin the 
equation 

Let. 

denote the value of r a t  a point P. 
Integrating this, we have 

" 

Also by equatioil ( 5 . 3  ), 

where c12 = ctz + Y? - 2 a ~ .  cos +. 
Hei~ce ~17. t l o  + C'. 

aucl integrating with respect to Y, we get for ,r = tr, 

the usual StoIies' quadmtul*e formula. 
Porlnula ( 5 .  20 ) for N enal)lcs us also t,o 6ncl (l~viotions of the 

vertical ( 7, 5 1 a t  any l~oin t  0. I11 Fig. 11, let t'he gi-avity ai~omaly 
at P be Ag. The11 a t  0 we have 

k 
N = -  jp , f  (+! dw ... ( 5 . 2 5 )  

27rG 
If A is the azimuth of 1' froin 0, reclzol~ecl positive from south by wcst, 
and if 7, are the meridional and prime vertical deflections at 0, 



reckoned positive towards south and west respectively, then clifferen- 
tiating ( 5 .25  ) and simplifying by spherical tl-igonometry, we get 

1 
27rG 

8.f 7) = - - ~ S A ~ ~ ~ ~ ~  A do 

1 S f  ... (5-26)   sin A d o  

5. Converse problem.-From the preceding formulz, we 
can obtain a solut,ion of t,he converse p1.0blein7 namely, to find the 
gravity anoinalies from Bno\vn geoidal unclulations. This can be 
cloile either by application of the equation (,5-9) or froin Stokes' 
equations (5.6). 

As in ( 5 - 2 ) the potential S, ( 8, L, 9 -  ) a t  an external point of 
sphere is 

8, (8, L , r )  = -- S (d', L ' )  ( ( ? , I L +  1 )  
4-rr 5 5  - - 

dp' (EL' 
27r +1 

- - s  ( 0', L' ) 
:, p '  d ' ,  (5.27) 

47r ( r"2arcos  c+a2) '  
0 -1 

where S ( d', L' ) clenotes the potential a t  a point ( t ' ,  L' ) on the 
sphere, and {is the angle between the clirections (8, L )  ancl (8', A'). 

88 ,  - Hence ( S T )  S ( 8 ' , L f ) .  1 -cosecf-da 'dLi  l. ... ( 5 . 8 8 )  
I . = ( L  --Cj 47ra. 4 2 

- - - 1 5 1 s  ( e f , ~ ' )  d r r t  d ~ ' .  
47i-a 

... ( 5 - 2 9 )  

Substitut,ing in ( 5 . 9  ), me have 

Alternatively,* starting froin equations ( 5 . 6  ) and putt'ing 
N  = k F ( 8, L ), we have 

Hence 
n 2rr 

as =L~SP(O',T;) 4.rr [ I . ~ P , + S . ~ P , + ~ - ~ P , + ,  ...I [zpf  d h f  
0 I1 

f l  3rr 

- - --- G Ij N ( I - ~  1 a r t a L ' .  ... ( 6 . 3 1 )  
l c .  47r 

-1  0 

It is important to realize that the above formu1;c are true only when 
thrh g,.c>oitl awl ~pheroid satisfy the co~idition of equality of pote~ltial 
. . - - - -  - . --- - -- - 

* (tap. RILO, Jo11~nr~l of t11c Inclia.11 RInthc111ntica.1 Socicty, Vol. 20. 



and coincidence of centre of gravity. The undulations of the 
geoid deduced from astronomic-geodetic deflections cannot be used 
in (5 .31)  to give Ag. 

6. Practical application of the above formulae.- For 
cornputatioilal purposes, Stokes' fol-mula ( 5 . 2 0  ) may be written 
as follows:- 

( + )  w. G 
... ( 5 . 3 2 )  

0 
2II 

where Ago = j0 Ag is the meail value of a y on a circle of 
27r 

radius +, and F ( + ) = f ( + ) sin +. 
If we take zones of width A+o, we have 

k 
N= %a%, mag,, I.: :+,, ... ( 5 . 3 3 )  

where Ag,,, is the meall gravity anomaly in a zone, and 

J: F ( + I  a+--- ['(+)I::, +,, +? being the + - I  a+, - A+, 
limits of the zone. Equation ( 5 .33  ) may now be mi t ten  as 

N= 4 2 ~ g , ~ [ +  ( + ) I G 2  $1. ... ( 5 . 3 4 )  

The expressions for the various functions are as follows:- 

+ + ,f (+ )  =a (cosecT + 1 - G  sin - - 5  cos+ 
2 + -3  COS* l og , ( s ink+  2 sin2 -)) 2 

3 + - - sin" log, (sin - + sid-  
2 2 

These functions have been ta,hulated* by Lambert a t  intervals 
of every degree from 0- 180'. The follorvin~ useful table gives t'he 
rise of the geoid due to A g =  001 cm./sec.? ln different zones. 

* U. S. Departn~cbnt of Con~~nol-cr. Coxst and (Ieodctic Snrvoy. Specinl Pnbli- 
cntion No. 199, 114-117. 



Elevation of Geoid due to a gravity anomaly of one milligal ivc 
each zone. 

ZONE N in ft. 
-- 

- 4 

- 4 

- 3 

- 1 

0 

+ I  

+ 2 

+ 2 

+ 2 

+ 1 

0 

The figures in this table are correct to the nearest foot. 

Turning now to deflections, we can write the equations ( 5 - 2 6  ) 
in the following form by dividing the space round the origin by 
a series of concentric zones of width A+,. 

The suffix rn denotes the mean value of the expression in n zont. of 
width A+", and 

sin + Sf= 1 { --- cos2 $12 + 
2 sinJr12 

- 3 sin + cos -- + 5 ,gin2+ 
2 

$ 1 + 2 sin $12 - 3 cos + cos2-- 
2 l + s i n + / 2  

). ( 6 . 3 8 )  



8.f The values of sill + -for different values of Jr are tabulated 
a l l .  

1 below. The table also shows sin + Tf-) for the various zones. ( a + " &  

S f  It is to be iioted tha t  the fui~ctioil sill + -- becomes infinite a t  
a+ 

the origin. This, however, does not maltc the fiilal result infinite, 
since ( A!/ cos A ),,, ancl ( Aq sir1 A ),,, ill the irincrmost zone approach 
1 
- Inore rapidly t,han ( sill + q) approaches x .  The following 
a S+ ,,I 

lwocedure may he cmploycd for t.he innel-most zone, for which 9 is 

1 .J. small anrl ( sin + Sf') = - cosec --. s+ I,, 2 
If s denotes the radius of this zone in linear measure, we have 

s =  16 I,b alld 

Thc cxl)rcssion ilisidc t,he braclrets may bc evaluated hy taking 
ll A = - and estimatiilg C 

12 
A CoS A ill each of the ~ompart~ments.  

S 



S f  From the above table for sin y% --, the following table has 
83. 

been deduced, which can be usecl for getting the deflections at a 
point from the gravity anomalies. 
Meridionnl  deJlections due t o  A g  cos A= 1  mil l igal  in each zone, ol. P.V. 

deflections d u e  to  A g  s i n  A = 1  millignl in  each zone. 

As an example of the application of the preceding formnlz, the 
effects of the gravity anomalies in India and Europe in raising the 
geoid a t  Jubbulpore, Lucknow, a point 1' with coorclinates ( $ = 25', 
L = 81°), Amagaon a i d  Bangalore have been computecl and are 
tabulated below. 

Station N as computed from 

Limiting 
radii of 
zones 

0 0 +- 1 

1- 2 

2 - 5  

5 -  8 

8-10 

Inclian anomalies European nno~ualies 
feet feet 

Ag cos A 
or 

Ag sin A 

+d:is 

+0.16 

+0.24 

+0.12 

+0.06 

0 55' 
Lucknow ( t  I 2860 50 ) -12.6 

Amagaon ($I:: - 4 . 0  

Limiting 
radii of 
zones 

0 0 

40-50 

50-60 

60-70 

70-80 

80-90 

Ag cos A 
or 

Ag sin A 

+d;og 

+0.06 

-0.01 

Limiting 
radii of 
zones 

1 1  

15-20 

20-25 

25-30 

30-40 

Bangalore 
r# = 12 58 
L = 7 7  38 } ... 

Ag cos A 
or 

Ag sin A 

+d:12 

t 0 . 1 0  

+0.08 

+0.07 

+0.12 

For India the width of the zones was taken as 2' ancl for Europe 
so. These latter were divided into compartments square. The 
effect of the European anomalies varies from 0 . 6  feet to 1 .  G feet, 
according as the station is in Southern or Northern India. 

Limiting 
radii of 
zones 

906-1000 

100-120 

+0.02120-140 

140-160 

-0.04160-180 

As a further interesting application of the f o r m u l ~ ,  they were 
used for confirming the considerable differential geoidal rise* be- 
tween a point in Central Inclia ancl one in Burma as eviderlcecl by 

' Survey of India, Geodetic Roport, 1934, Chart XXII. 

Ag cos A 
or 

Ag sin A 

-0(b6 

-0.14 

-0.11 

-0.06 

-0.01 



deflections. A point A (4 = 17' 50', L= 78' 50') was chosen in Central 
India, Ag's bein6 available up to a radius of 10' around it. I11 Burma 
it was only posslhle to  go up to  4' for the most suitable point B with 
coordinates ( 4 = 20° lo', L = 96' 10' ). Taking zones of width lo and 
applying formula ( 5 . 3 4  ), the geoiclal rise a t  A was found to  be 
- 18 - 3 metres and a t  B - 0 . 7 5  metres. The clifferential geoiclal rise 
is therefore 1 7 . 6  metres or 58 feet, which agrees almost perfectly 
with that  deduced from deflections. Deflection results have also 
indicatecl an extraorcliiiary rise of the geoid * between Mandalay 
and Victoria Point. This cannot be corroborated by the gravity 
inethocl, as data in the south of Siam is rather meagre. More data 
are neecled in  the Bay of Bellgal and the South China Sea. 

Turning now to the wicler problem of determining the absolute 
value of N a t  different poiilts of the globe, i t  must be mentioned 
that i t  will be a very long time before the requisite data  will be 
available. Hirvonent utilized all the observed gravity tlata a i d  
supplementecl i t  by extrapolation and by theoretical considerations. 
He used free-air anomalies, and chose 8he International spheroid as 
his reference spheroid. These anomalies were only available for 32% 
of the northern hemisphere and 4% of the southern. For the remain- 
ing areas, for want of better assuinption he assumecl isostasy to be 
perfect and used isostatic anomalies. Based on such meagre data, 
the clecl~lced values of N can only be take11 as indicative of the orders 
of magnitude rather than as true quantities. He cleducecl N a t  
62 places on the earth, the results showing a range from + 85  to 
- 115 metres, i.e. a total range of 200 metres. This woulcl be a very 
important result if i t  could be established with certainty, since ideas 
about the numerical magnitude of N have been very divergent and 
some people still believe that  N can be of the order of 1000 metres. 
As i t  is, Hirvoneil's values are on the average + 50 metres, and his 
discussion on errors shows tha t  their uncertainty is also of the 
order of k 5 0  metres. For numerical work, he proceeded in 
a method slightly different from tha t  mentioned above. He  
divided the earth once for all into elementary areas d u  (squares of 

5' and 10' x lo0), ancl estimated Ag for each of these. He 
collceived N a t  a station to he made up  of three parts :- 

( i ) N, due to Ag's within a radius of 10' from the station ; 
this is called the regional part. 

( i i )  N, due to Ag's between 10' and 39'; this is the con- 
tinental part. 

(iii) N,, due to Ag's between 39' and 180°. 
The stations a t  which he computed N were so chosen that for each 
of them Ag's up to += 30' were lcnown. 

Hunterf  estimated that  with 1700 stations evenly spaced over 
the earth's surface, combined with 200 stations suiLxbly distributed 

* Sllrvey of India, Geodetic Report, Chart VI. 
t IIirvonen, Voriiif. clos Finnischen Ge6d: Institutes, No. 19, 1934. 
f Phil. 'l'rans. of the Royal Soc. of London, Sories A, No. 743, 1935, 3774.31. 



locally, the above formulz would yielcl N with a probable error 
of + 34 feet ancl t i l t  with a probable error of + 0 -  35". 

Finally i t  is necessary to enlphasize that  for computing ( N, q 
ancl j a t  a place with the help of the above formulze, we require a 
knowledge of Ag all over the globe. This is a clesideratum at 
present. A useful feature of the forinulz, however, is that they 
enable us to  fincl the effects of different gravimetrically surveyed 
areas of the globe in proclucing tthe rise of the geoid and deflections 
of the vertical a t  a given place. As more and more gravity data 
become available their contributions can be adclecl. 

It is obvious from the formula, tha t  if A g  is cha~lgecl by a 
cor~stant amount, the derivetl (N ,  7,E) are unaffected. In  other 
morcls, the choice of G, in t'he normal gravity formula is not impor- 
tan t  for this purpose. 

7. Effect of near zones.-We next proceecl to answer the 
question as to how accurately one can deduce N, T ,  f from Ag's 
by a consicleration of the nearer zones only. It cloes not suffice to 
argue that  the nearer zones are all tha t  are important, because the 
table on p. 90 shows a t  a glance tha t  the effects of clistant zones are 
by no means ~legligible. Indeecl i t  is not difficult to construct an 
example in which a consideration of zones up to 30' will not give 
even the sign correctly. Suppose A g  = 20 P, ingals, where P,, is a 
zoilal harmonic of clegree n. Table 1 gives the mean values of these 
Ag7s in clifferent zones for n= 1, 2, 3, 4 ancl 10. Table 2 gives the 
contribution of the gravity anonialy in each zone to the final 
N. For n = 1, we know tha t  the geoidal unclulation shoulcl be nil. 
The working in Table 2 shows N to be 4 feet in this case. The 
discrepancy is clue to our zones not being small enough for the 
computation of the final N. If ,  however, we had consiclerecl the 
cffcct of zones u p  to  30°, we would be in error by over 200,feet. 
A scrutiny of the table shows tha t  for n= 2 ancl 3, near zones are 
quite inaclequate to give an  iclea of N. It is obvious from CL p~i0l.i 
considerations tha t  the g~.eater the n, the better the approximation 
yi~lclerl by the nearer zones. This is confirmecl by a comparison of 
the rpsults for P i  ancl P,,,. Table 3, column 1 gives N for the 
rlistribution A g  = 20 P,  a t  a poi~i t  clistant 30° from the pole of PL. 
Column 2 gives N for A g  = 20 P,, a t  a point clistant lo0 from the 
pole. The error made in cleclucing N from near zones is markedly 
greater for n= 4 than for n= 10. Hence, in order tha t  one may be 
able to deduce N from a consideration of nearer zones aloile (say 
up to  30°), the Aq's should not possess wicle-spread inequalities- 
They should olily have harmonics of highcr orcler, so that the effects 
of remote portions tend to cancel out. As an example, if the gravity 
anomalies contain the longitude term (second harmonicj, near zolle8 
will not ~uffice. 



TABLE 1 



9 G 

TABLE 2 

TABLE 3 

Zones 

0 

0- 16 
10- 20 
20- 30 

30-  4 0  
40-  50 
50-  60 

60-  70 
70- 80 
80-  9 0  

90-100 
100-110 
110-120 

120-130 
130-140 
140-150 

150-160 
160-170 
170-180 

TOTALS ... 

N in feet 

ZONES 

1 
10-90  
20-30  

80-40  
40-50 
50-60 

fj0 - 70 
70-80 
8 0 - 9 0  

- - -  

n = l  I n = 2  I s = 3  

For TI,=  4, total N= -27 .3  feet 
,, n=10, ,, = + I 4 9 7  ,, 

ZONES 

90-100 
100-110 
110-120 

120-130 
130-140 
140-150 

150-160 
160-1770 
170-180 

- 

+ 87.6  
+ 76.9 
+ 4 i . 5  

+ 13 .7  
- 14.7  
- 31.3  

- 30.9  
- 20.6 
- 6 . 3  

+ 4 .8  
+ 8 . 6  
+ 3 . 6  

- 9 . 7  
- 23.7 
- 34.2  

- 34.2 
- 24.4 
- 8 . 4  

+ 4 . 3  

n = 4  1 n=10 

N in feet 

n = 4  I n = l O  

+ 84 .0  
+ 5 2 . 5  
+ 12 .6  

- 2 . 1  
+ 8 . 4  
+ 1 8 . 9  

+ 1 0 . 5  
- 12.6  
- 2 3 . 1  

- 16.8  
- 4 . 2  
+ 2 . 1  

- 6 . 3  
- 12.6  
- 6 . 3  

+ 1 0 . 5  
+ 16.8 
+ 8 . 4  

+140 .7  

+ 4 . 2  
0.0 

- 2 . 1  

- 2 . 1  
+ 2 . 1  
+ 2 . 1  

0.0 
- 4.2  
- 8 . 4  
- -- 

- 6.3  + 2 . 1  
- 2 . 1  - 2 . 1  

0.0 

+ 88 .2  
+ 71 .4  
+ 37 .8  

+ 8 . 4  
- 6 . 3  
+ 2 . 1  

-I- 14 .7  
+ 31 .5  
+ 33 .6  

+' 27.3  
+ 1 2 . 6  
+ 2 . 1  

0.0 
+ 8 . 4  
+ 21 .0  

+ 27.3 
+ 2 3 . 1  
+ 8 . 4  

+411 .6  

+ 56.7 
- 4.2 
- 10.5 

+ 2 . 1  
- 2 . 1  
+ 8 .4  

0 . 0  
- 12.6 
+ 8 . 4  

+ 6 . 3  
- 4.2 

0 . 0  

- 2 . 1  
+ 4 .2  
+ 6 . 3  

- 8.4  
- 2 . 1  
+ 6 . 3  

+ 52.5 

+ 1 6 . 8  
- 4.2  
- 2 . 1  

0.0 
0.0 

+ 2 . 1  

0.0 
- 4 . 2  
+ 4 .2  

0 . 0  
- 4 . 2  
- 4 - 2  

- 2 . 1  
0.0 
0 . 0  

+ 84 .0  
+ 63 .0  
+ 27.3 

+ 2 . 1  
+ 4 . 2  
+ 1 8 . 9  

+ 29.4 
+ 27.3 
+ 8 . 4  

- 6 . 3  
- 1 2 . 6  
- 4 . 2  

+ 6.3 
+ 4 . 2  
- 6.3  

- 18.9  
- 2 1 . 0  
- 8 . 4  

+ 1 9 7 - 4  

0.0 
+ 2 . 1  
+ 2 . 1  

- 2 . 1  
- 2.1 
+ 2 . 1  

- 



The same holds for the deflections, as can be seen from the 
following investigation. Let  the geoid be taken as the triaxial 
ellipsoid 

+Ccos2 (L-L , ) cos28  

and let its reference spheroid be 

The gravity anomaly is now represented by the systematic longi- 
tude term 

Ag=GC cos 2 ( L-Lo)  cos28. 
Obviously N=kC cos ? ( L - L o )  cos28, 

Heiskanen gets C= 19 x 1 0 - 6 ,  L, = 0". Using these values, we get 
for Kalianpur ( latitude 2P0, longitude 78") 11 = - 2" - 6 ,  t = + 2" 9 .  
Usiilg the table on p. 92, we see tha t  the effect of these gravity 
anomalies compriserl within a radius of 1.5" round Kaliiinpur is 
77 = -ON 43, 5 = + Of' 45, so that  the outer zones beyond this are 
responsible for over 2" in each compartment. This residual error 
may be much greater in an  extreme case. Thus a t  latitude 2P0, 
longitude 45O, the deflection would be q=0 ,  t = 2  Ccos 24"=7''. 
The assumed gravity anomalies wit,hin a radius of 15" produce a 
prime vertical deflection of ahout + 1" only, showing tha t  the outer 
zones are most important. 

It should be mentioned, however, tha t  both for vertical separa- 
tion and for deviations, the relative deflections of two points not. 
too far from each other can be obtained from a considerattion of 
the near zones alone, the effect of the remote anomalies being 
nearly t,he same for both. 

A point worth mentiolling is tha t  even in the absence of 
systematic error in Ag's, the effect of outer zones is considerable in 
the case of N, and a fair knowledge of Ag over the whole globe is 
required before N can be determined with any degree of accuracy. 
The deviations are however not so sensitive. Thus, supposing the 
Tibetan plateau to be an  area of gravity anomaly -0.020 gals 
and to be bounded by latit,udes 30"-36" and longitudes SO0-100°, 
it was found by an application of the table on p. 98 t.hat i t  mould 
produce a mericliollal cleflectiou of + 0" - 3 ancl a prime vertical 
deflection of +o".P a t  Ka]i%111)nr. These are surprisingly small, 
considering the large ailomaly assumcd ancl its large extent,. 

An attempt lias been madc to find out t,hc or ie~i t ,n t~ io~~ of t,hc 
International and Helinert, spl~eroi(ls a t  linliilnpar from the g.ravit.j 
anomalies in India. Gravit,y dat'n was arailablc up to n, rndius of 
10' from KaliLlpur, and t,ho average values of Ag cos A R I I ~  



Ag sin A were computecl in suitably chosen zones. The cleflections 
with respect t o  Helmert's spheroid came out to  be q~ = + 1".6, ' 
FH = + 4". 2, and with respect to  the International spheroid as 
71 = + 1" 3, 51 = + 4" 0. These clifEer by about 1" from the deflec- 
tions adopted a t  Kaliiinpur H.S. (serial no. 240, Supplement to 
Geodetic Report, Survey of India, Vol. V I  ). A much more reliable 
value of the deflections would be obtainecl if Ag's were known in 
the Arabian Sea ( between latitudes 12' and 20°), in the Bay of 
Bengal, and in  Burma, Siam ancl Tibet. 

It can be argued tha t  although a consicleration of near zones 
may not give the absolute magnitucle of N correctly, i t  may suffice 
for giving the relative changes of N for near points, because the 
e%ect of remote portions will be much t,he same. W e  have seen 
already tha t  the gravity anomalies in Europe produce a clifferential 
effect of 1 ft. for points in Northern ancl Southern Inclia. This is 
by no means serious, but  Europe is only a small portion of the earth's 
surface ancl i t  is conceivable tha t  the differential effects of the 
whole globe may be much greater. 

A goocl use of the knowleclge of Ay's in near zones is as follows. 
For obtaii~ing N from deflections, we require such a close mesh of 
astronomic-geodetic stations that  the cleflections a t  intermecliate 
points should be interpolable. To provide sections of the g~oicl in 
the plains of Inclia, recent observations have 1)een made a t  i i~t~rvsls  
of 10 to  15 miles. I n  mountainous regions, a much closer interval 
is needed. Where, however, the cleflection stations are fern, and 
cannot be interpolated, i t  is possible to supplement them by addi- 
tional cleflections obtained with the help of Ay's in near zones. 
The only conclition required is tha t  An's shoulcl be known within 
an area of such an extent rouncl t<he  tati ion that the deflections clue 
to the remote portions a t  points in our 1imite;l area are linearly 
interpolable. W e  may proceed as follows:- 

Divide the earth into two parts A, B by a circle of radius 150 
to 200 miles surrouncling the station. Suppose astronomic-geodetic 
deflections q, F )  are known a t  points (I,? ap, n3 . . . . . . Compute at 
these places ( 8q,,, 85" ) clue to All's in region A. The tlifferences 
( q - 8qA, F- 8Fn ) are due t$o effects of Ag's in region B and t,O the 
iriclinatiori of the gravity spheroid to the triangulation spheroi(l. 
The latter quantity varies very slowly from point to  point, a.nd we 
can assume i t  to  he int,erpolahle. W e  have also so chos~il  the 
bountlary of region A tha t  cleflections due to All's in region h' are 
interpola1)le. Herice from the known poi~lt,s these tlifferences call 
he iritr:rpolaktl for all the point,s a t  which doflect,ions are ~-cq~lirt.(l- 
Adding to t h ~ s e  tliffcrences thc tloflcct,ions ( &,,, 6f,, ) tlue t.o Ag's i l l  

rcgion A we have the 611al tleflections. The metehod thus collsist,~ 
i r ~  first removing the local effects as I)est as possihlc, a 1 ~ 1  t,hen 
intr:rpolati~lg ancl ad(lillg on thc local cffects. 

T h i ~  methot1 call also I )@ u s ~ t l  for interpolat.ion of ol)scrve(l 
defleetiona even without the aid of gravity data. AH n role, ol*erve(l 



deflections, especially in mount,ainous areas, are not amenable to 
interpolation. For instance, we have a t  

DehraDiin ... q=-32".2, 
R%j pur . . . q =  -42".2, 
Mussoorie . . . q =  -31N.2. 

Simple irlterpolation for RLjpur, which lies practically midway 
between Dehra Dun ancl Mussoorie, would give an error of about 
10". W e  can, however, predict q a t  R5jpur to the ilearest seconcl 
by computirig the Hayforcl cleflections ( &,., sf,  ) clue to  topography 
in the surrounding area, say 100 miles rouncl the station. 

W e  fincl 6qC = - 15" 15 a t  Dehra Di'n, 
- - - 15". 08 a t  Mussoorie, 
- - - 24" 3 a t  Riijpur, 

wherefroin ( q - &,.) = - 17" - 0  a t  Dehra Dfiii, 
ancl ( q - q ) = - 1 '  1 a t  Mussoorie. 
Hence by interpolation, a t  Riijpur we have 

(q-8qc)  = - l G N . G  
01' = -24N-3-1(j1 ' .~= -40N.9, 
which cliffers from t,he observed value by 1". 3 only. 

We will now lnention how use was inarle of this inethocl in a 
practical case *. The problem was to  obtain Laplace azimuths a t  
three stations Bowra, Kheri ant1 Riilihi of a t~~iangulation series. 
Priine vertical cleflections 5 mere available a t  the widely separated 
points Ainritsar, Giigli-Bhnr and Agra. Direct interpolation was 
therefore inaclinissible. Thc relative positions of the stations are 
roughly shown below. 

Ainritsar 

31337358.72 
741:52:23.45 

Bomra 
Kheri 
Riikhi 

( 2 8 : 0 7 : 1 7 - 5 )  
75:01:23.4 

Crugla Bhar 
Agra 

87:09:39-93 
7s :01:01 S9 

P.V. cleflection nnomnlics werc computecl nt these points fro111 
A,'s ill the regioll 1zEO lniles roulld each o f  theill. The d i f f c r r~ l c~  
between the observclcl and t11c coilipnted mioinnli~s gnrc thtl effcct 
of distant zones at, eac1.l l o ~ l ~ i t n d e  station. Thcsc c f f ~ t s  \\-t\1.t1 

inhrpolated for the ~ z i l l l ~ t h  stat,io11s nut1 ~ s u l t ~  ncldcvl to thc1 
deflection anomalies proclucccl by thc near zones. 

' Prof. Pnpor 28 of tlic Sr~rvcy of Indin, 1). 65. 



8. Undulations of the geoid.-The problem of determining 
the possible magnitucles of N a n d  N,, the elevatioils of the natural 
and comperlsatecl geoids respectively above their reference spheroids, 
has attracted considerable attention of geoclesists, and is still a 
live subject for research. Two methods by which the above can 
be determined, namely, from gravity anomalies ancl plumb-line de- 
flections, have already been mentionecl. Both these iilvolve actual 
observations on the earth. The uiiclulations call also he deducecl 
theoretically by making some assumption about the internal consti- 
tution of the earth. As example of this may be mentioned 
Helmert's* computations for finding the effect of the uncompensated 
continental masses in  producing the warping of the geoid. He came 
to  the conclusion that  the undulatiolls could be of the order of 
+ 1000 m. Utilizing his expansion of t'he lithosphere in terms of 
spherical harmonics, P rey t  has also estimated the possible unclula- 
tions for a non-isostatic earth. His work confirms Helmert's results, 
his N's ranging from - 4000 to + 4000 feet. 

The warps of the geoicl have also been estimated for an isostatic 
earth by P rey t  and Jung t .  Taking the first seven terms in Prey's 
clevelopment of the lithosphere, Jung  showed tha t  the range of Nfor 
an isostatic earth is about 300 feet. Prey's results also exhibit 
much the same range. 

As regards the cletermination of N from observed gravity, me 
might mention the work of Helmert $, Ackerlll and Hirvonen. With 
the meagre data a t  his disposal, Helmert usecl free-air anomalies and 
estimated the maximum value of N to be of the order of + 100 m. 
Ackerl reducecl about 4000 gravity stations by Prey's reduction, and 

2 c t  
using Brun's formula N =  - Ay, obtained undulations of t,he order 

3 6  
of 2800 m. J u n g l  has discussed in detail the fallacy of his reasoning, 
and sags tha t  he gets these large N's due to  using an incomplete 
formula. 

Ackerl next expressed the gravity anomalies of the earth, re- 
duced according to Prey's reduction, in spherical harmonic functions 
up to terms of the 16th order $. From these anomalies he computed 
N's by utilizing Stokes' equations**. His results are set forth in 
Table 11, p. 265 of his paper, and show undulations of the order of 
1000 m. The largest depression comes out to be 837 rn. in the Pacific 

* Hoheren Geodlsie, 2, 1884, Chap. IV. 
t Prey, Cferl. Beit. 36, 1932, 242-68. 
f Jung, Zeit. f .  Cfeoph. 8, 1932, 51. 
5 IIelmert, Dic Schwerkrnft uncl dic Massenvorteilnng dcr Erdc. Encycl- 

math wigs., VI, 1, 7, Abvchnitt 10. 
( 1  Ackerl, Gerl Beit. 29, 1931, 273-335, 

Jung, Cferl. Reit. 36, 1932, 212. 
$ F. Ackvrl . Daq Schwcrkraftfield rler Erde. Akad. wion sitx.-b~r. (1. n l ~ t l ' ~ ~ .  

naturw. kl. (TI%), 140, 1931 und 141, 1932. 
** F. Ackcrl: Dip Ergehnis~c dclr Entwicklung iles Schw~rkmftfeltles tier Erde 

nach kugclfundionen his zur 16 ordnung. Zeit, f.  geoph. 0 ,  1933,273. 



Ocean a t  $J = 1 lo, L = 22". Ackerl assessecl the accuracy of his de- 
duced N's to  be + 50 m. ancl affirmed tha t  the magnitude and distri- 
bution of these undulations showed that  the geoid callnot be represent- 
ed sufficiently accurately by a triaxial ellipsoid. Much has been 
written by Hopfner in justification of these results. It is enough 
to point out here tha t  Ackerl's results have to be rejected, his morlc 
being vitiated by the fact tha t  Prey's anomalies cannot be applied 
to Stolces' formula as i t  stands. The necessary modification required 
will be indicated later in para 10. 

An attempt to  cleter~nine N from the observed gravity anom- 
alies, which rests on correct theory but ie handicapped by dearth of 
observational material, is tha t  of Hirvonen * already mentioned in 
para 6. On account of lack of data, he had to resort to highly 
precarious interpolations and extrapolations in estimating the 
gravity anomalies. His work however brings to light that the eleva- 
tions are on the average + 50 m., and refutes the possibility of 
undulations of 1000 m. 

9. Reductions for finding the form of the natural 
geoid.-In the proof of equations ( 5.6  ), we have postulat,ecl tha t  
by a suitable reduction all the inasses external to the geoid have 
been removed. One such reduction is the isostatic one, in which 
the masses protruding above the geoid are abolished. The level 
surface of the new mass-distribution is the compensated geoid, and 
equation ( 5 20 ) gives t,he rise N, of this geoid above its reference 
spheroid. To get t'he rise of the natural geoid, me have to  acld 
the separation between the two geoids due to  the mass t'ransfers. 
This is easily computed with the help of Lambert and Darling's t 
tables for determining the form of the geoid. 

Jeffreysf has shown in an elegant way, that  although there 
are masses outside the r~atural  geoid, equation ( 5 - 20 ) is valid to 
the first order in height of the earth above the geoid, if we use 
values of gravity reduced to  the natural geoid by free-air. The 
reason for the propriety of free-air reduction in Stokes' formula is 
as follows :- 

Imagine all the topography above the natural geoicl to be 
condensed on the geoid. This is called the condensatmion reduction, 
and we will designate the level surface of the new mass distribution 
as the condensed geoid. It can be easily shown tha t  for all practical 
purposes, so fa r  as N is concerned, the natural and condensecl 
geoids may be considered as identical. Thus by Lambert's tables, 
the geoidal rise due to a cap of thicluless 3 Irm., radius 100 Inn. and 
density = 2 - 8, is 34 - 8 metres. If the mass of this cap be con- 
sidered as a coating, the rise due t'o i t  ainounts to 

In the above formula hp = 2 67 x 3 =surface dcnsit,y of the coating, 
c =  100 lrm. =horizontal extent and p,, = nwan density of the carth. -- - - - -- - - - - - - - - -- - 

" Veroffent. des Finni.;chen geodat i~chen In.;titutos, No. 19, I I~ l s ink i .  193L 
t U.S. Coast and Gcodetic Survcy, Special Pnb. No. 199. 
$ Gorl. Beit. z, Geophysics 36, 1932, 206-11. 



This shows how closely identical the effects of the actual and 
condeilsed topography are, even for the unfavourable case that has 
been considerecl. This is clue to  the fact that  N clepends more on 
the actual amount of the attracting mass than on its coiifig~iration. 
If, tjhen, we can get Ag's on t,he conclensed geoid, these can be used 
in Stokes' equation for getting the rise of the natural geoicl, since 
there are no masses external to the concleilsecl geoicl. 

Now, let E be a poiiit on the eartli ( Fig. 12 ), aiid A the 
coi.responcling point on the geoid. Let  t'he masses insicle the geoid 
be designated by M, ancl the masses between the geoicl and the 
eart,h's surface by m. Before condei~sat~ion, q~ = attraction of masses 
1C1 a t  E + attraction of masses wb a t  E, while after conclensation, 
9~ = attraction of masses 31 a t  A + at'ti-action of conder~secl masses 
m a t  A. The condensation reduct,ion is, t,herefore, gb - g~ = 2ghlk + 
( attract,ion of conclensed masses m a t  A - attraction of masses m 
a t  E)  

E 9 

where o cleilotes the skin density, ancl the volume integral extends 
thi-oughout the mass nh. The term ill brackets on the right hand side 
can be evaluated rigorously with the help of Hayford's reduction 
tables, but  For our purpose we may neglect the curvature of the 
earth aucl regarcl the masses m between E and A as ail infinite 
plateau. Then this term vanishes, and we have g, =g, + 2ghlh 
which is nothing else but Jeffreys' result tha t  Ay,'s need oilly be 
used. I n  mountainous areas, however, me may regard the topography 
above A as an  infinite plateau on which are superposecl some un- 
clulations. After conclensation, the effect of the infinite plateau 
cancels out ancl we are left with the so-called "~elande-Recluction" 
AgR. Hence a more correct expression for ga is 

S A =  YE + AllR + 2ghlk. 
AgR is always positive. I t s  values for some of the bypica1 

mountain stat,ions in Inclia are as follows : 
Statmion Altitude 

feet 
Dome1 . . . 2230 
Hay an ... GO84 
Sonamarg . . . 9050 
Churawan . . . 8151 
BIinmarg . . . 93.51 
Wozul Haclur . . . 13931 

Agn 
gals 
~ 0 1 5  
.028  
- 0 2 1  
. 0 2 4  
. 0 2 3  
-019 

Of course there are some mountain stations for which A!/n is 
less, hut 0 . 0 2 0  gals seems a fair average value to take for uiieven 
topography. If, then, we neglect A!jR and obtain N from AgA'g, we 
are making a systematic error of about 20 mgals in a11 t,he mom- 
ts i r iou~ regions. A casual error of this amount in (say)  every degree 
erlclarc will not have much effect on the resulting value of N, it 
is I I O ~  tlesirable to have such a large systematic error for all the 



mountainous regions of the globe. These remarks holcl only for 
determining N. If the objective is to cletermine the ellipticity of 
the level surface, free-air gravity ailomalies can be used without 
objection. 

The above shows tha t  for the determination of N for practical 
purposes, it is si~nplest to  use coilcleilsatioil reduction. The use of 
isostatic recluction entails an extra step, namely, the computation 
of the deformation of the natural geoid clue to mass displacements. 
The 1-elat8ire merits of these two reductions for determining N have 
been considerecl by the author* in a paper entitled " Gravity reduc- 
tions ancl the figure of the earth ". W. D. La~nber t  t has also 
contributecl several articles on the subject which are interesting. 

Another point of view about the determination of N has been put 
forward by Hopfner 1 in various articles. He  vigorously clenounces 
all other reductions except Prey's, and asserts tha t  this is the only 
reduction which can be ~ l s ~ c l  for determining the geoiclal rise. In  
this recluction the earth is left as i t  is, ant1 values of g are cleduced 
on the natural geoicl as if gravity observations mere made there. It 
is obvious tha t  to  make use of Preys7 anomalies we have to extencl 
formula ( 5 . 2 0 ) '  so as to be applicable to the case when there are 
masses external to the geoicl. The formula can bc modified for 
Bouguer anoinalies as well. 

10. Extension of  Stokes' theorem.-We mill now con sic lei^ 
method ( 1) ) inentio~lecl in para 4. I11 this the mass disti~ihution of 
the earth is not interfel-etl with, a ~ ~ d  the problem is to get a ralue of 
the potential a t  a point inside t,he att , l .actil~~- masses. The appropriate 

9 
formula: have beer1 morliccl out by Malilan 4 ancl Lambert. 11 The 
integral equation betmeen N ancl Ag, when there are some masses 
external to the keoid, is 

where U, clenotcs the l~otential of the masses betmeen t.he geoicl and the 
earth. Prey's anomalies can ap1,ropriatcly bc used in this formula. 
We see that as in the case of 110 external masses, a linonrledge of the 
di~t~ribution of delisity inside thc geoid is not rrquirecl. But to get 
U,ancl Ag it is essential to lanow the precise armiigc1ne11t of masses 
extcrnal to the geoid. Hence if there are masses inside and outside n 
I~vel  surface, its form cali~lot 1,e ileterininecl froin a Inertt 1<11olvlctlgc 
of t,hc values of gravity on it. It is essciltial to l i 110~  t'hc cxterl~al 
Inasses as well. The sitnatio~i is thcrcforc p~.cciscly the same as 
lvhcn tllerc are 110 cxter~ial masses. 

* (4111;1too, (ivrl. h i t .  z. (:,~ol>l>. 63, 19:3S, ;!I;. 
t I l ; ~ l ~ ~ J ~ t ~ r t ,  II1111. (lclotl. No. 1.1, 1O:j I,, t'(i :1:1 
f I h b 1 . 1 .  Iltiit,. z. (itboph. 38. 19:I:l.  :<0!)-20. 

(ithrl. Ilvit,. z. (:tv>l>I~. 46. 1:):35, 1:W 1 ls7. 
1 )  Cirrl. Beit, z. Cfoopl~. 40, 1937, 199-209. 



The rigid c~mput~a t ion  of Prey's anomaly is by no means less 
troublesome or less inaccurate than tha t  of Hayford's anomaly, and 
there is no particular advantage in  using i t  for the coinputation 
of N. It might however be put to  the following two uses :- 

If S is the natural geoid, and yp the value of gravity on it (due 
r r  

to actual topography), then gp dS = 47rM, where M is the sum JJ  
of the masses inside the geoid. 

Again if Vl denotes the potential due to  the internal masses, then 

Hence if gp is known, we can obtain the total masses insicle the 
geoicl as well as their potential without knowing the internal law 
of clensity. From the point of view of the geoidal rise, this recluctioil 
has receivecl exaggerated importance a t  Hopfner's hands. 

11. S u m m a r y . - I n  this chapter, the subject of c1ei.iving the 
undulations of the geoid and plumb-line deflections from the gravity 
anomalies is consiclerecl from both the theoretical and practical 
aspects. It is explained that  Stoltes' formula can only be usecl for 
certain red~ct~ions,  and that  i t  has to be suitably modifiecl hrfore it 
can be applied to Bouguer and Prey's reductions. 

Examples have been given to illustrate the gravity methocl of 
cletermining ( N, 7, f ) from the available gravity clata. Besicles 
these, a general idea is given of the maximum possible separation 
of the geoicl from its reference surface. 



CHOICE OF A REFERENCE SURFACE FOR 
GRAVITY WORK 

1. Reference surface.-The earth's surface is very irreg- 
ular a i d  cannot be expressed by a simple mathematical formula. 
The same holcls for the natural geoicl, ancl in dealing with problems 
coilrlected with the figure of the earth, i t  is therefore customary to 
clefine the geoid with respect t.0 some suitably chose11 reference 
surface. 

Any surface may be taken as a reference surface, but i t  is ad- 
vantageous if i t  be so chosen as to fit the geoid reasonably well. It 
may be deterlninecl froin l~hysical consicler.atioi~s, or inay be clefitiecl 
geoinet,~-ically. I n  triangulation the latitudes and longitudes are 
computecl on a reference surface which is a true spheroicl. We 
shall see presently that considerations which determine the refel-eiice 
surface for gravity work are quite different from those necessary 
in the case of triangulation ailcl arc measurements. 

2. N e a r l y  spherical surface.-For a proper understanding 
of the various deiiilitioils of the reference surfaces in gravity work 
it is essential to lcnow the interpretation of the various harmonic 
terms in the equation of a nearly spherica;l level surface. 

Let the geoicl be 
~ = C G  ( 1 + Y O + Y l + Y 2 + ~ J +  ..................) ... ( 6 . 1 )  

where Yo is a constant, 
Y, =A1 sin 9 + ( A,, cos L + I?,, sill li ) cos 9, 

A 3 
Y, = ( 3 sin? 9 - 1  ) + ( A,, cos l; + B,, sin L ) - sin 29 

2 2 

+ ( A,, cos 2 L + B,, sin 2 L ) 3 cos26, 

ancl so oil. 
8, h are the gcoceutric lat8it udc a~itl loiigitude resljcct,ively of a point 
on the surface. 

The volume of this surface is 

- - 417 n7 ( 1 + Y,, ):j, if A ,'?, / I J ?  ctc. call be ~ieglected. 
3 

Obviously, the radir~s of :I sp11cl.c o f  c~qunl volume\ is X. ;- n ( 1 + I;,). 
As all cxarnplc, thc cquatioii of' ;t sl)horoitl, ~icglect.iiig tcrii~s of 

order 62, ia 



1  W e h a v e  k = n  2 
E ancl A,= - - e .  

3  :3 

For a true spheroid, the value of k correct to  t,he E term is given by 
the expression 

k = ~  ( 1 -  I  .. E - - 1 $ - - s s + - - e 4  l3  2 u 5 )  . 
3 5  105 504 

W e  see from the above tha t  the surface 9- = k ( 1  -t Y, + Y,  + . . .), 
the spheroid r = k [ 1  + e ( & - si1l28 ) ]  ancl the sphere = k have the 
same mass to  a high clegree of approximation if 

1 
~ 2 = €  (T - si1l2o AZl cos L + Bnl sin L ) :- sin 20 + 

anti if terms of orcler E', eS etc. are neglected. 

Again, the centre of gravit,y of mass 01- volume of surface (6 - I), 
assuming it to  be homogeneous, is given by 

= nA,, terms nA," etc. being negligible ; 
- - 

similarly x = &Al1, and y = nBl,. 
If, however, the surface be consiclered as a sphere of raclius a 

and density p,, overlain by a coating ap ( Y, + Y2 + . . .), we have 

If the origin be chosen a t  the centre of gravity of volume of 
the surface, t'he equation of the surface becomes 

r = k ( 1 +  Y,+ Y,+ ...) ... ( 6 . 3 )  
This is the reason why the Y, term is absent from equation ( 6 . 2  ) 
which is the equation of a spheroid referred to it's centre as origin. 

The .Y2 term is very important as i t  enables the ellipticity of a 
level surface to be defined. W e  know that r = k ( 1 - 3 E Y, ) is a 
spheroid of ellipticity E, and 

is an  ellipsoid, the mean ellipticity of whose mei-iclians is e and the 
ellipticity of whose equator is 7. The actual ellipticities of the 
ellipsoid ( 6 . 4  ) in the planes x z ancl y s are E -712 and e + 712. 
This shows tha t  the last term ill equation ( 6 . 4  ) contributes to the 
mericlional ellipticity, but averages out to zero in the mean merid- 
ional ellipticity. 



Equation ( G - 3  ) may be written as 

e may be definecl as the ~neaii  ineridioual ellipticity of the geoicl. 
It must be noted, however, tha t  this clefinition call oilly hold under 
certain reservations because there are certain other terms which 
contribute to the meridional ellipticity. As an example, t,he coeili- 
cierlt A ,  in the fourt,h harmonic 

34 sin '8  - 30 sin2B + 3 A , ,  cos L + n,, sill L 

also adds to the ellipticity of the geoicl. It is assuined that  such 
terms are of 0 ( B ~ ) .  

The coefficients A,,, B,, (1eti11e the ellipticity q of the equator. 
Here again, there will be terms in Y,, Y, etc. which contribute to  
this ellipticity, but as nient~ioiletl in chapter 11, q has so far bee11 
determilleel by coilsidering only the A,? and R,, terms. This equato- 
1.ial ellipticity is very small ant1 has not been determined reliably. 

We will next considel- the sigiiificance of the harmonic terms 
cos L cos 2 B, sill 1, sin 2 8. Th(b cxpres~ion $ (A?, cos I; + U?, sill L) x 
sin 2 6 does not coi~tril)utt) to either the mericlional or equatorial 
ellipticity since i t  vaiiishcs both for 8 = 0 ancl 8 = 90'. The equation 

represents an ellipsoid referred to axes which are not the principal 
axes. To see this, consicler for simplicity the spheroid obtained by 
putting q=0  in the abovc. Let its principal axes be OC,,, Oz, Oy, 
(Fig. 1 3 )  where the plane COOz passes through Greenwich. If S is 
any point on the spheroicl such that L C,OR = 90 - 8, its equation 
referred to these axes is 

Now choose a new set of rectangular axes OC, Ox' Oy', where OC 
is definecl with respect to OC,, ( t,he minor axis) by the angular co- 
ordiilatea (B,,, ho), L,, beiiig reclconecl from the plane through Co 
and Greenwich. W e  have 

sin8' = sill0 sinB,, t cos0 cos0, cos ( II - A,, 

- ( ) 
IT 

sin0 + ( IT - 0,) ) c o d  cos C - Lo , since O,, + . 2 2 



The equation of the spheroid referred to the new axes is 

r = n ( 1 - e  sin2 13' ) 

Comparing this with equation ( 6 - 6 ), we have 

Hence A21 cot Lo =-, . . 
B,l 

The above shows tha t  the coefficients of the harnloilics cos h sin 2 0 
and sin L sill 2 8 clepencl on the deviation of the rotation axis from 
the axis of symmetry*. 

I n  the case of the earth, e,, A,, can be cleduced by utilizing 
Prey's t results. He  has expressecl the 1ithosphel.e in a series of 
spherical harmonics up to  terms of the 16th order. His series A 
gives the undulations of the lithosphere from mean sea-level, and 
series B is such that  over the oceans i t  gives the same results as A,  
but on land i t  gives zero values. The values of the coefficie~lts of 
the various terms in the two series are tabulated in Table VII  of the 
above publication by Prey. 

Substituting the values A a B in eqoations ( 6.10 ) an(1 
( 6 11 ), we obtain 

and 

This clisplacernent of lo of the axis of rotation from the minor axis 
is excessive. I f  topography were compensated to a tkpth of 100 km., 
Macler has estimated tha t  this clisplacement moult1 he of the orcler of 
1' of arc. Even a displacement of 1' is excessive because rosult8s of 
the variation of latitude point to  n coi~lcicler~ce of the two axes to 
within a fraction of a second of arc. Hence thei-e must 1)c some 
sort of compensation which must be neutralizillg the above displace- 
ment. 
- --- ---- 

* Lamhert, Bull. (fend., No. '26, 1930, 113. 
t Al~ l innt l l~~ngon  c l ~ r  Kiiniglichc~l Ctcscllncl~aft clcr Wissc~nschnftc.11 z11 (dottill- 

gen, Neue Folgo Bd. XI, 1, Berlin 1932. 



3. Definitions of a reference surface.-We have already 
seen in chap. I how Helmert* usecl the level spheroid as a reference 
surface to  the geoicl. The p o t e ~ ~ t i a l  on the geoicl is 

- f M ( l - S ( s i U ~ 8 -  W -  -- 
r I.* I 

f Y  # f Y , +  +-I+- 1 
,,.B 

. . . . . + - (d2 1'' c0Sf2 61 
r4 2 

and on the level spheroid is U= FITo, where 
0 5 3  5 ( 1 - 3 sin2 8 ) + - 

2 9.- 2.fM 
* 

G 
7 

a 

" )) sinl8--si11V+- . 
3 5 

By equation ( 1 28 ), the €01-inultt for normal gravity on the above 
level spheroicl is 

This forinula sP1-ves as n basis from \vhich to r ~ ~ l ~ o i l  gravity 
anomalies. 

The following is a ~ilorc. illustrative tl-eatmeut for showing th(b 
analytical 1-elntio~ls bctwoc~i~ thc geoicl aild its r e f ~ ? r e ~ l c ~  sllrface ill 
gravity work. For the formuliu of the prc*cctli~lg cha1)ter (giving 
tllc unclulations of the gcoitl from the gravity anol~~alit ls) to 1)c 
valicl, thv rtafcrch~ice surfact\ has to satihl'y cclrt:li~l couditioiis. 
Choosi~lg the origin a t  the cel~trcb of grnvitj o f  tl.,c geoicl, its 
c~quntioi~ inay be \vl-itten as 

y = k  (1  + Y 2 +  Y7+ .., . .  ). 
We have seen that with the reference surface 

~ = l c ( l - ;  € I " ) ,  
equations ( 5 .  G ) are accurate to the small qun~rt,it,icls of orcler e? pro- 

virled G is the same for both the surfaces. S i ~ ~ c e  (: = . f ' Y L  w c  k, 
Ic 3 

this co~~cl i t~ io i~  elisures tha t  the Inasses of the t,wo SUI-faces are c~c]n:~l. 
Obviously the centres of gravity of thc two  surf;~cc.s arck also 
identical. 

To obtaiii n geileral result, supposo t,he cqnatioil of the geoitl 
is writtell ill the form 

,r=lc ( 1 - 6 3  Y,,-E, ZX,,). ... ( G . 1 2 )  
Thc.11 by chap. v, p:%ra 3, Stoltes' oqnat , io~~s (5  . (i ) arc satislicd cor.rc3c.t 
to tckrlns of 0 ( c2 ) i f  the rcfcrc\~~cch sui.facr 1)c C*IIOS(>II 2s 

,,*=l< ( 1-6 5 IT,,). 
By our de ti ,lition of the ellipt,icit,y of t , h ~  gcoitl, this choicc c~lsnl.t~s 
that the mean ~llpritlional ellipticity is t,ho saint\ FOI. 1)otll tho 
sul-f:~ccs, the diffcr(\llcp tlc ill t,hc.ir c~llipti~it~itls 1)oillg 01' 0 (6, ) = 0 (6'). 

- - 
* Hoheren Qeodiisio, 2, 1884, 89. 



If, then, the geoid is 

Stokes' equations would be satisfiecl if the reference surface be 
chose11 as any surface of the family 

r = k  ( 1 - 4  e P ,  + ~ ' S I U , , ) ,  . . .  ( 6 . 1 4 )  
provided e' is of 0 ( e 2 ) .  As an example, let the geoid be 

I11 terms of spherical harmonics, i t  can be written as 

Comparing with ( 6  13), we have 

If we choose as our reference surface the spheroid 

we have 2 3 12 3 
f' 5 I l l , ,  = - - COP,, + - e 1) 

( j  :j - zj ;; I '  

Gravity on ( 6 . 1 6 )  is 

4 
5 35 

and on ( 6 . 1 7 )  is 

the mean value G of gravity being the same on both the surfaces 
(cf. chap. I, para 6 ). 

From these equations, me see that  

This confirms tha t  Stolres' equations are va]icl for our reference 
surface. 

111 view of what has been saicl in para 2, i t  is obvious that the 
reference surface has the same vol~une as the geoicl. Assuming the 
same mean density for the two surfaces, theil. masses i~lust also be 
identical. When the geoicl is reckolled as the equipotelltial of a 



reference surface, having w coating of total mass zero on it, the 
condition which t,he reference surface has to satisfy in order tha t  
Stolres' equations should holcl is tha t  i t  shoulcl have the same 
potential as the geoicl ( ( i f :  chap. v, para 3 ). It appears, then, 
that to the orcler of accuracy to which we are working? the reference 
surface is so deformed by the superposition of coat i i~g on it, that 
the new level surface having the same potential will also have its 
volume equal to it. This collvcnient property only holds when 
the mass displacemei~ts are small. I n  l~art'icular, i t  is true for the 
important case of a inass1c.s~ coatii l(~ on a sphere. It implies that b 
the N's fouild by Stokes' inethocl satisfy the coi~dition 

P r 

( ( N d o  = 0. 
J J 

It is important to ~*ealize the significailce of the above condition 
which the reference surfaco has to satisfy. Michailov* has tested 
the accuracy of Stol~es' quadratur-c. fol.muln by i~uinel-ical examples 
with simple motlels. He  starts with the Intcri~atioilal spheroid and 
fincls its separt~tion from a, referei~cc sl~here of equal volume. 
The result by Stoltes' formula is out by 26 metres which is of 
0 ( a 2 )  = 70 inetres (and  a t  first sight this shows tha t  our formula 
is accurate to 0 ( E ) oilly ). Michailov appears to be satisfied that  
Stokes' formula has given N to t,his accuracy. Actually, however, 
i t  gives N to O ( r c c ' )  i.e.. inctre or so, provided the reference 
surface is properly chosen. Michailov's reference sphere does not 
satisfy the conclitioll tha t  i t  has the same incall meridional ellipticity 
as the geoid. 

Since A ~ = G S  (n-  1 )  u,,, we have 

55 A, clo = 0. ... ( 6 . 1 8 )  

The area of the zone +k- +I,+, is 2 7 ~  7i" cos +, - cos +,(+1). If A,,,g 
donotes the mean value of gravity in this zone, equation (6.18) 
may be written as 

2 2 7 ~  k3 A,,,g (cos +k-cos + l r + l )  =0. 

Hence the reference surface also satisfies the condition that the mean 
value of gravity on i t  is the same as on the geoid. 

4. Relation between the centres of gravity of the 
geoid and its reference spheroidt.-A reference spheroid is 
the equipotential of certain masses within it. W e  have seen that  
these masses cannot be homogeneous. The geoid is the equipoten- 
tial of the spheroicl with a coatiiig of total mass zero superposecl 
on it. Both these surfaces beilig helerogeneous, the centres of 
gravity of mass ancl volume arc not identical. It is important t,o 
realize, however, that  for a ~tcarly s1)herical cquipotential surface, 
the masses have to I,(! so arrailg~cl that  the two ceiltrcs of gravity 
are coincident. To see this, let 0,,,, 0, tlcilotc tho centxcs of gravity 
of mass and volume respectively. We have all-cady see11 that  if - -- - - - - 

" Verh. dcr 8-ten Tnji1111g (lor Uelt. C:cotl.lt. lColllis\ion, ITclsinki 193ti, 207. 
t i.e., Centres of gravity of the lnattcr cunt;~incd within thrsc two surfitcos. 



the origin be chosen a t  O,,,, the expression for the potential at an 
external point is given by ( I - 241 ). Next, with respect to 0, as 
origin, the equation of the nearly spherical level surface may be 
written as 

r=lc ( 1 + u , + u y +  " " "), 
ancl we have seen in chap. I, para G tha t  its external poteiltial is 

Equations ( 1 - 2 4  ) ancl ( 6 * 10 ) ~ I - C  iclentical ; hence the t8wo centres 
of gravity are coincitlent. It is worth while calling attellti011 to 
the fact t,hat t'his property oiily holds for a level surface which has 
no masses external to  it,. I11 other words, i t  holcls for the com- 
pensateci geoicl but not for the natural geoid. I n  tleriving the 
quaclrature formula between N a~lrl  Ag, the equations of the geoicl 
ancl it,s referelice spheroicl are so clioseil tha t  the term 16, is absent 
from both. I11 other words, the centres of gravity of the masses 
inside them ( or of their volumes ) are icle~ltical. 

Suppose, however, we want to find g on the level surface 
v = k  ( l + u l + u , + . . . . )  ... ( 6 . 2 0 )  

It is not clifficult to see t,hat the ,ul term will be missing from the 
expression for 9. Thus, let the potential of the attracting mat'ter be 

If ( 6 . 2 0  ) is to be an  ecluipotential, we must have 
FV= V +  4 o 3 ? c o s e  = constant on it, 

1 ku, 1c2up (,,ek" w = ~  yo(: 1 + --,-+ 1' - /w3 -t . . . . ) -  ( T - s i n ~ ~  

from which me get 
6W 

The term in 74, clisappears in the final expression for g. In other 
words, t'he values of gravity a t  corresponcling points on the two 
surfaces 

r=cc ( l + Y o + Y , + Y 2 + - . . . )  
and ~ = c t  ( 1 + Y,,+ Y,+ . - .  . . - .  .> 

are identical. 
The same holrls for the gravity anomaly Ay which is the rliffer- 

elice of gravity on the two surfaces. To see this, consider a sphere 
r = CL and call i t  surface I. P u t  a coating ri ( Y,, + Yl + Y, + . . - ' * ' ' 1 
on it, ancl we get a new level surface 11. The potential due to 
this coating is 



If g denotes gravity on 11, and yo 011 I, we have 

As before, t'he term in Yl becomes zero automatically. If ,  then, we 
are kiven tha t  Ag = dl u1 + Aq u2 + . . . . and we want to  determine 
N=B,  u ~ + B ~ u ~ + . . . . . .  , we see tha t  all the terms are determin- 
able except B,. Other consicleri~tions are  needed for fixing t'his 
term. The a h o ~ e  propert,y clel~ends on t,he law of att,raction ancl is 
indepen~lent of the internal cvhst~it~ution of the body. 

I11 the quaclrat,ure forinula X= ~ y f  (.+) C Z W ,  ;t term of t,he 

type A, + d,.u, in Ag has no effect on X. Hence for cleducing the un- 
~lulat~ions of the geoid froill A!/'s, t,he position of the centre of t'he 
reference surface has to be clefiued beforehand ; i t  cannot be derived 
from gravity observations. The simplest course is to make the 
t,wo cent,res of gravity coincide. I11 the co~lverse case, when me 
kno~v t,he orientat,ion of the reference surface ancl its separ B t'  on 
N=B1 u1 + B, u, + .. . ... from the geoicl, Ay can be easily cleterininecl 
except that, one coilst,ant G or ill has t'o be found by some ot,her 
method. q l thoug l~  N cont,ains t'lle u, term, we have seen tha t  this 
term will be inissiilg froin Aq. Hence t,he physical ancl clynainical 
clefinit~ion of t'he reference surface of the geoicl, which involves the 
idea of the equality of the potent,ial, ensures t,he coiilcicleilce of the 
cent,res of gravity of t'he two surfaces. 

To'carry t,he cliscussion a bit furt,her, suppose we choose the 
centre of gravity of volume of the earth as origin. I t s  equat'ion 
m a y b e w r i t t e i l a s r = k ( I + Y , + Y 3 +  ...+%,+...). ... ( 6 . 2 1 )  
Regarcling this as a sphere I ,= k with mean density p,,,, on which a 
coating of surface density kp 2 Y,, has been superposecl, me see tha t  

,, = 0 

the equation of the level surfice- which has the same potential as the 
sphere r = k is 

The tirst. hnrnlonic term being absent, the centre of gravity of 
this level surface coincidrs with tha t  of the earth. This coinciclence 
must be to first order terms only, because! we have seen in para 2 
that strictly speaking, terms 17;, etc. enter in the expression for 
the centre of gravity of a surface. From the foregoing discussion 
we see that  if an uncompensated coating k 2 Y,, is superposed on a, 

4, =0  .. - 
sphere r = k ,  which is a level surface of certain attracting masses 
within it, the new level surface with the same potential will have 
the same centre of gravity as the sphere. 



W e  will now consider the relations between the centres of 
gravity of the earth, the natural geoid and the compeilsated geoid. 
Let  E be the centre of gravity of mass of the eartrh, G of the 
geoid, and C tha t  of the compensated geoid ( Fig. 14 ) . Laborious 
computations are needed for obtaining the numerical est.imates of 
the relative distances between t'hese points. 

Prey's series for the lithosphere gives 
A ~ ,  = 1129 - aNctres, a B~~ = 664 . ~ n l e t r e s  9 a 8 I-- - 1 2 6 3 , ~ n w t ~ s  

and for the hydrosphere 
a All = 1005.  5n'"t'"" a a,, = 563. fjmetrcs, a A I- - 11 19 - . 3111ctres 2 

where A,,, B,,, A, are const,ant coefficients in t,he expression for Y,. 
Based on the above data, Lambert* has tabulated the displacements 
of the centres of gravit,y due to  superposition of coi~t i i~ent~s and - - -  
oceans. If ( r ,  +, L ) denote the ainourit and direction of the clis- 
placement of the centre of grav i t ,~ ,  t.hen for no coinpensatioil we 
have 

Lambert-Prey - Mader 
= 6 2 5metres 672n1etrm 

q= 43O 57' N. 49'. 6 N .  
L=31°  01' E. 34'. 2 E. 

and for compensat,ion a t  the dept,h of 100 km. 
- = 4 . gnletres 5 .  amctres 

q L 4 3 0  57' N .  49 ' -2N .  . 

L = 3 l 0  01' E. 34O.1 E. 
It is important to notice tha t  by isostatic compensation the 

displacement of the centre of gravity is reduced to 15 feet. In  our 
figure, therefore, G C = 1 5  feet. Of course if we assume soine 
different type of compensation me will get a different answer. 
Indeed by assuming suitable subterranean mass anomalies, me can 
make the difference of 625 metres in the centres of gravity of the 
normal and final earth to  disappear. 

When t,he mass clisplacement is such tha t  the centre of gmvit,y 
is displaced by an  appreciable amount, Stokes' formula mould still 
hold, provided the new level surface be shiftecl so tha t  the centre of 
gravity of the new mass configuration is made to  coiiicicle with 
that  of the original level surface. 

5. Mean load level.-W. D. Lambertt  has introduced yet 
anot,her reference surface, which he designates as the mean load 
level. Imagine the oceans of the earth to be soliclifiecl into inat,ter 
of normal crustal density. Take a spheyoidnl eyui~70te?~tial having 
the same volume as the modified eart,h. Assuming the earth's 
surface to he 7 0 . 8 %  ocean and 29.2% land, and taking the meall 
depth of the oceans to he 3800 metres and that  of the land to be 
840 metres, the mean load level surface comes out to be about 
4600 feet below the geoid. 

* Bnll. Geod., No. 26, 19.70, 11 1 .  
t Bull. Geod.. No. 26. 1930. 31. 



I f  the topography be reckoned from this surface, then under 
certain conclitions, the deformation of the geoid due to the intro- 
duction of topography and its compensation is given by the simple 
formula 

where H denotes the height of the topography reclioiled above the 
mean load level, r the depth of compensation and p, p,,, the crustal 
ancl mean densities of the earth respectively. 

Darlinv* has testecl the accuracy of this appl-oximate formula b. 
by considering 31 stations, of which 2 2  are on land ancl 9 in the 
sea, located in the Atlantic, Pacific ancl the Arctic o c e n ~ ~ s  a i d  also 
in the waters of the E. Indies. The average discrepancy from the 
true value came out to be 5 feet and the greatest cliscrepancy 
1 2  feet. 

It should be mentioned, however, that now nre can get u more 
precisely with the help of Lambert'st tables which are basecl on 
more rigorous forinulz. 

6. Earth spheroid and reference spheroid.-It is 
important to realize the difference between spheroids used in gravity 
work and those usecl for computing triangulation and deflections. 
A gravity spheroid is unique and may be termed the 'Ear th  
spheroid.' As we have seen, i t  has the same centre ef gravity and 
inass as the matter within the geoicl. The reference surface in  
triangulation has to be a true spheroid, which may be defined in 
two alternative ways by seven coilstants as below : 

( a ) ( s,, yo, z, ), the co-ordinates of its centre. 
( p, y ), the direction cosines of i ts minor axis. 
( a, e ) ,  its semi-major axis a i d  ellipticitj. 

( b ) cO, the angle between the spherical ancl geoidal 1101-mals 
a t  an  arbitrarily chosen point, lciiomn as the geodetic 
datum. 

A,, the angle which the plane containing the above two 
iiorinals inakes with the geoidal ineridiail 

No, the vertical separation between the spheroicl and the 
geoid a t  the datum. 

( p, 7, a, e j as before. 
It  is easy to show that  the quantities ( to, A,,, 1V,) fix the 
co-ordinates of the centre of the spheroid uniquely. I n  triangula- 
tion, the centre (a3,, y,,, z , )  is not defined to be a t  the earth's centre 
of gravity. It is defined by assigning arbitrary values to to, A,,, No. 
The angular co-ordinates P, 7 are specified by defi i i in~ the minor axis 
of the spheroicl to be parallel to the earth's axis of rotation. 
This condition enables Laplace's equation to be utilizecl. 

* Bull Geod.. No. 44. 1934. 
t U. S. Const and Gcodetic Survey, Sp. Publication So.  199. 



In determining the figure of the earth by triangulation in 
different countries, one is handicapped by the fact tha t  the datums 
are  unconnected. Each triangulation is computed on a differently 
orientated spheroicl, which is unsatisfactory. There is no immediate 
prospect of connecting the different triangulations of the globe, 
as  t.he oceans present a serious di5culty. The best that one can 
do is t o  clerive the dimensions of the best fitting spheroid from 
each isolatecl triangulated region, and combine the various results 
by assigning suitable weights. 

Hence i t  is much more practicable t o  connect gravity data of 
different countries rather than their triangulations. Apart from this, 
the t r iang~~la t ions  of clifferent countries are on different sph~roicls, 
and the problem of coilversion of a triangulation series from one 
spheroicl to  another is much more colnplicatecl than that of 
conversion of a gravity formula. The determination of the 
figure of the earth from the gravity anomalies, therefore, yossesses 
a more ahsolute character. When, however, enough gravlty data 
are available on the globe, i t  mill be possible to  place each 
astronomic-geodetic net on its reference spheroicl in terms of the 
Earth spheroicl. For each isolatecl triangulation net, if a t  one point 
( N ,  7, 5 )  are cleterminecl by Stokes' theorem, the net can be 
computecl in terms of the reference spheroicl mith the origin a t  the 
earth's centre of gravity. 

I n  Inclia,the Ii~ternational spheroicl is orieutatecl by inalcing it 
fit the compensatecl geoicl best. Due to  clearth of gravity data, it is 
not possible to get reliable values of ( N, 7, 5 )  a t  the clat~~in from 
Ag's by the fornlulze of chapter v. I f  Hirvonen's results coulcl be 
accepted, one coulcl a t  least determine its separation from the geoid 
a t  KrtliCinpur in Inter~zatiojznl Lev-nzs. Hirronen's results seein to 
inclicate tha t  the International spheroicl, as orientatecl in India, 
has to be clepressed through 200 feet or so. 

7. S u m m a r y . - I n  this chapter the various types of reference 
surfaces are clefinecl. It is pointecl out tha t  i t  is necessary to clistin- 
guish a t r i m ~ n l a t i o n  reference spheroid from a gravity one, even if 
their climenslons are identical. The geoidal profiles ordinarily 
determined from gravity data are not closely linked mith those fl.01~ 
deflection clata, as the orientation of the reference spheroid may be 
quite clifferent in the two cases. They can only be anchored to each 
other satisfactorily, provided ( N, 7, e )  are clerived a t  one point of 
the triangulation net by the help of Stokes' theorem. 
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